Abstract
This article introduces the notion of component-hypertree, which models the component-trees of an image at various connectivity levels, and the relations of the nodes/connected components between these levels. This data structure is then used to extend a recently proposed interactive segmentation method based on component-trees. In this multiscale connectivity context, the use of a component-hypertree appears to be less costly than the use of several component-trees. Application examples illustrate the relevance of this approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: ICIP, pp. 41–44 (2007)
Braga-Neto, U., Goutsias, J.: A multiscale approach to connectivity. Computer Vision and Image Understanding 89(1), 70–107 (2003)
Braga-Neto, U., Goutsias, J.: Object-based image analysis using multiscale connectivity. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 892–907 (2005)
Caldairou, B., Naegel, B., Passat, N.: Segmentation of complex images based on component-trees: Methodological tools. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 171–180. Springer, Heidelberg (2009)
Jones, R.: Connected filtering and segmentation using component trees. Computer Vision and Image Understanding 75(3), 215–228 (1999)
Kiwanuka, F.N., Wilkinson, M.H.F.: Automatic attribute threshold selection for blood vessel enhancement. In: ICPR, pp. 2314–2317 (2010)
Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48(3), 357–393 (1989)
Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: methodology and application to dermatological imaging. In: ISMM, vol. 1, pp. 239–250. INPE (2007)
Naegel, B., Wendling, L.: Combining shape descriptors and component-tree for recognition of ancient graphical drop caps. In: VISAPP, vol. 2, pp. 297–302 (2009)
Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)
Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 990–1004 (2007)
Passat, N., Naegel, B., Rousseau, F., Koob, M., Dietemann, J.L.: Interactive segmentation based on component-trees. Pattern Recognition (in press), doi: 10.1016/j.patcog.2011.03.025
Salembier, P.: Connected operators based on tree pruning strategies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, ch. 7, pp. 179–198. ISTE/J. Wiley & Sons (2010)
Serra, J.: Connectivity on complete lattices. Journal of Mathematical Imaging and Vision 9(3), 231–251 (1998)
Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)
Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector attribute filters. In: ISMM. Computational Imaging and Vision, vol. 30, pp. 95–104. Springer, Heidelberg (2005)
Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 272–285 (2007)
Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and gray-scale shape filters. In: ISMM, pp. 305–314. CSIRO Publishing (2002)
Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Passat, N., Naegel, B. (2011). Component-Hypertrees for Image Segmentation. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-21569-8_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21568-1
Online ISBN: 978-3-642-21569-8
eBook Packages: Computer ScienceComputer Science (R0)