Skip to main content

Abstract

Printability, the capability of a 3D printer to closely reproduce a 3D model, is a complex decision involving several geometrical attributes like local thickness, shape of the thin regions and their surroundings, and topology with respect to thin regions. We present a method for assessment of 3D shape printability which efficiently and effectively computes such attributes. Our method uses a simple and efficient voxel-based representation and associated computations. Using tools from multi-scale morphology and geodesic analysis, we propose several new metrics for various printability problems. We illustrate our method with results taken from a real-life application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brockett, R., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Trans. Sig. Proc. 42(12), 3377–3386 (1994)

    Article  Google Scholar 

  2. Cao, T., Tang, K., Mohamed, A., Tan, T.: Parallel banding algorithm to compute exact distance transform with the GPU. In: Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, pp. 134–141 (2010)

    Google Scholar 

  3. Dougherty, R., Kunzelmann, K.: Computing local thickness of 3D structures with ImageJ, 2007. In: Proc. Microscopy & Microanalysis Meeting, Ft. Lauderdale, Florida, August 5-9 (2009), www.optinav.com/LocalThicknessEd.pdf

  4. Geometric Global. GeomCaliper tool (2010), geomcaliper.geometricglobal.com

  5. Lambourne, J., Brujic, D., Djuric, Z., Ristic, M.: Calculation and visualisation of the thickness of 3D CAD models. In: Proc. SMI, pp. 107–112 (2005)

    Google Scholar 

  6. Maragos, P.: Differential morphology and image processing. IEEE Trans. Image Processing 5(6), 922–937 (1996)

    Article  Google Scholar 

  7. Min, P.: Binvox voxelizer (2010), http://www.cs.princeton.edu/~min/binvox

  8. Mullikin, J., Verbeek, P.: Surface area estimation of digitized planes. Bioimaging (1), 6–16 (1993)

    Article  Google Scholar 

  9. Nooruddin, F., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE TVCG 9(2), 191–205 (2003)

    Google Scholar 

  10. Reniers, D., Telea, A.: Tolerance-based feature transforms. In: Jorge, J., et al. (eds.) Advances in Comp. Graphics and Comp. Vision, pp. 187–200. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Sato, Y., Nakanishi, K., Tanaka, H., Nishii, T., Sugano, N., Nakamura, H., Ochi, T., Tamura, S.: Limits to the accuracy of 3D thickness measurement in magnetic resonance images. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 803–810. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Shapeways. Online 3D printing (2010), www.shapeways.com

  13. Stelldinger, P., Terzic, K.: Digitization of non-regular shapes in arbitrary dimensions. Image and Vision Computing 26(10), 1338–1346 (2008)

    Article  Google Scholar 

  14. Yezzi, A., Prince, J.: An Eulerian PDE approach for computing tissue thickness. IEEE Trans. Med. Imag. 22(10), 1332–1339 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Telea, A., Jalba, A. (2011). Voxel-Based Assessment of Printability of 3D Shapes. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21569-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21568-1

  • Online ISBN: 978-3-642-21569-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics