Abstract
Printability, the capability of a 3D printer to closely reproduce a 3D model, is a complex decision involving several geometrical attributes like local thickness, shape of the thin regions and their surroundings, and topology with respect to thin regions. We present a method for assessment of 3D shape printability which efficiently and effectively computes such attributes. Our method uses a simple and efficient voxel-based representation and associated computations. Using tools from multi-scale morphology and geodesic analysis, we propose several new metrics for various printability problems. We illustrate our method with results taken from a real-life application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brockett, R., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Trans. Sig. Proc. 42(12), 3377–3386 (1994)
Cao, T., Tang, K., Mohamed, A., Tan, T.: Parallel banding algorithm to compute exact distance transform with the GPU. In: Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, pp. 134–141 (2010)
Dougherty, R., Kunzelmann, K.: Computing local thickness of 3D structures with ImageJ, 2007. In: Proc. Microscopy & Microanalysis Meeting, Ft. Lauderdale, Florida, August 5-9 (2009), www.optinav.com/LocalThicknessEd.pdf
Geometric Global. GeomCaliper tool (2010), geomcaliper.geometricglobal.com
Lambourne, J., Brujic, D., Djuric, Z., Ristic, M.: Calculation and visualisation of the thickness of 3D CAD models. In: Proc. SMI, pp. 107–112 (2005)
Maragos, P.: Differential morphology and image processing. IEEE Trans. Image Processing 5(6), 922–937 (1996)
Min, P.: Binvox voxelizer (2010), http://www.cs.princeton.edu/~min/binvox
Mullikin, J., Verbeek, P.: Surface area estimation of digitized planes. Bioimaging (1), 6–16 (1993)
Nooruddin, F., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE TVCG 9(2), 191–205 (2003)
Reniers, D., Telea, A.: Tolerance-based feature transforms. In: Jorge, J., et al. (eds.) Advances in Comp. Graphics and Comp. Vision, pp. 187–200. Springer, Heidelberg (2007)
Sato, Y., Nakanishi, K., Tanaka, H., Nishii, T., Sugano, N., Nakamura, H., Ochi, T., Tamura, S.: Limits to the accuracy of 3D thickness measurement in magnetic resonance images. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 803–810. Springer, Heidelberg (2001)
Shapeways. Online 3D printing (2010), www.shapeways.com
Stelldinger, P., Terzic, K.: Digitization of non-regular shapes in arbitrary dimensions. Image and Vision Computing 26(10), 1338–1346 (2008)
Yezzi, A., Prince, J.: An Eulerian PDE approach for computing tissue thickness. IEEE Trans. Med. Imag. 22(10), 1332–1339 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Telea, A., Jalba, A. (2011). Voxel-Based Assessment of Printability of 3D Shapes. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-21569-8_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21568-1
Online ISBN: 978-3-642-21569-8
eBook Packages: Computer ScienceComputer Science (R0)