Abstract
We compare two tree-based, hierarchical representations of volumetric gray-scale images for data-driven image filtering. One representation is the max-tree, in which tree nodes represent connected components of all level sets of a data set. The other representation is the watershed tree, consisting of nodes representing nested, homogeneous image regions. Region attribute-based filtering is achieved by pruning the trees. Visualization is used to compare both the filtered images and trees. In our comparison, we also consider flexibility, intuitiveness, and extendability of both tree representations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armstrong, C.J., Price, B.L., Barrett, W.A.: Interactive segmentation of image volumes with Live Surface. Computers and Graphics 31(2), 212–229 (2007)
Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, New Jersey (1999)
Berger, C., Géraud, T., Levillain, R., Widynski, N.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: Proc. IEEE Int. Conf. Image Processing 2007, San Antonio, Texas, USA, September 16-19, pp. IV–41–IV–44 (2007)
Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Proc. ISMM 1993, pp. 433–481 (1993)
Breen, E., Jones, R.: Attribute openings, thinnings and granulometries. Comp. Vision and Image Und. 64(3), 377–389 (1996)
Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Workshop on Volume Visualization, Washington, DC, USA, pp. 91–98 (October 1994)
Levoy, M.: Display of surfaces from volume data. IEEE Computer Graphics and Applications 8(3), 29–37 (1988)
Marcotegui, B., Beucher, S.: Fast implementation of waterfall based on graphs. In: Proc. ISMM 2005, pp. 177–186. Springer, Heidelberg (2005)
Marcotegui, B., Zanoguera, F.: Image editing tools based on multi-scale segmentation. In: Proc. ISMM 2002, pp. 127–135. Springer, Heidelberg (2002)
Meyer, F.: Morphological multiscale and interactive segmentation. In: EURASIP Workshop on Nonlinear Signal and Image Processing, pp. 369–377 (1999)
Meyer, F., Maragos, P.: Multiscale morphological segmentations based on watershed, flooding, and eikonal PDE. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 351–362. Springer, Heidelberg (1999)
Monasse, P., Guichard, F.: Fast computation of a contrast invariant image representation. IEEE Trans. Image Processing 9(5), 860–872 (2000)
Naegel, B., Passat, N.: Component-trees and multi-value images: a comparative study. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 261–271. Springer, Heidelberg (2009)
Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Processing 15(11), 3531–3539 (2006)
Passat, N., Naegel, B.: An extension of component-trees to partial orders. In: Proc. 16th Int. Conf. Image Processing (ICIP 2009), November 7-10, pp. 3981–3984. IEEE, Los Alamitos (2009)
Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)
Salembier, P., Garrido, L.: Binary Partition Tree. as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans. Image Processing 9(4), 561–576 (2000)
Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Processing 7(4), 555–570 (1998)
Salembier, P., Wilkinson, M.: Connected operators: A review of region-based morphological image processing techniques. IEEE Signal Processing Magazine 26(6), 136–157 (2009)
Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Analysis and Machine Intelligence 29(2), 272–285 (2007)
Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the Max-tree representation. IEEE Trans. Image Processing 16(12), 2943–2952 (2007)
Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jalba, A.C., Westenberg, M.A. (2011). A Comparison of Two Tree Representations for Data-Driven Volumetric Image Filtering. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-21569-8_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21568-1
Online ISBN: 978-3-642-21569-8
eBook Packages: Computer ScienceComputer Science (R0)