Skip to main content

Orders on Partial Partitions and Maximal Partitioning of Sets

  • Conference paper
Mathematical Morphology and Its Applications to Image and Signal Processing (ISMM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6671))

Abstract

The segmentation of a function on a set can be considered as the construction of a maximal partial partition of that set with blocks satisfying some criterion for the function. Several order relations on partial partitions are considered in association with types of operators and criteria involved in the segmentation process. We investigate orders for which this maximality of the segmentation partial partition is preserved in compound segmentation with two successive criteria. Finally we consider valuations on partial partitions, that is, strictly isotone functions with positive real values; this gives an alternative approach where the valuation, not the partial partition, should be maximized.

This work received funding from the Agence Nationale de la Recherche, contract ANR-2010-BLAN-0205-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Meyer, F., Najman, L.: Segmentation, minimum spanning tree and hierarchies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, ch. 9, pp. 229–261. ISTE/J. Wiley & Sons (2010)

    Google Scholar 

  2. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  3. Ronse, C.: Toggles of openings, and a new family of idempotent operators on partially ordered sets. Applicable Algebra in Engineering, Communication and Computing 3, 99–128 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. Journal of Mathematical Imaging and Vision 8(1), 41–58 (1998)

    Article  MathSciNet  Google Scholar 

  5. Ronse, C.: Partial partitions, partial connections and connective segmentation. Journal of Mathematical Imaging and Vision 32(2), 97–125 (2008), doi:10.1007/s10851-008-0090-5

    Article  MathSciNet  Google Scholar 

  6. Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. Applicable Algebra in Engineering, Communication and Computing 21(5), 343–396 (2010), doi:10.1007/s00200-010-0129-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Ronse, C.: Idempotent block splitting on partial partitions, I: isotone operators. Order (to appear, 2011)

    Google Scholar 

  8. Ronse, C.: Idempotent block splitting on partial partitions, II: non-isotone operators. Order (to appear, 2011)

    Google Scholar 

  9. Ronse, C., Serra, J.: Algebraic foundations of morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, ch. 2, pp. 35–80. ISTE/J. Wiley & Sons (2010)

    Google Scholar 

  10. Serra, J.: Mathematical morphology for Boolean lattices. In: Serra, J. (ed.) Image Analysis and Mathematical Morphology. Theoretical Advances, vol. II, ch. 2, pp. 37–58. Academic Press, London (1988)

    Google Scholar 

  11. Serra, J.: Morphological segmentations of colour images. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years on, Computational Imaging and Vision, vol. 30, pp. 151–176. Springer, Dordrecht (2005)

    Chapter  Google Scholar 

  12. Serra, J.: A lattice approach to image segmentation. Journal of Mathematical Imaging and Vision 24(1), 83–130 (2006)

    Article  MathSciNet  Google Scholar 

  13. Serra, J.: Ordre de la construction et segmentations hiérarchiques. Tech. rep., ESIEE/A2SI/IGM (2010)

    Google Scholar 

  14. Serra, J.: Grain buiding ordering. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 37–48. Springer, Heidelberg (2011)

    Google Scholar 

  15. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ronse, C. (2011). Orders on Partial Partitions and Maximal Partitioning of Sets. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21569-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21568-1

  • Online ISBN: 978-3-642-21569-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics