Skip to main content

Empirical Study of the Anatomy of Modern Sat Solvers

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2011 (SAT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6695))

  • 1447 Accesses

Abstract

Boolean Satisfiability (SAT) solving has dramatically evolved in the past decade and a half. The outcome, today, is manifested in dozens of high performance and relatively scalable SAT solvers. The significant success of SAT solving technology, specially on practical problem instances, is credited to the aggregation of different SAT enhancements. In this paper, we revisit the organization of modern conflict-driven clause learning (CDCL) solvers, focusing on the principal techniques that have contributed to their impressive performance. We also examine the interaction between input instances and SAT algorithms to better understand the factors that contribute to the difficulty of SAT benchmarks. At the end, the paper empirically evaluates different SAT techniques on a comprehensive suite of benchmarks taken from a range of representative applications. The diversity of our benchmarks enables us to make fair conclusions on the relation between SAT algorithms and SAT instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alistair, M.L., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. Information Processing Letters 47, 173–180 (1993)

    Article  MATH  Google Scholar 

  2. Aloul, F., Sakallah, K., Markov, I.: Efficient symmetry breaking for boolean satisfiability. IEEE Transactions on Computers 55(5), 549–558 (2006)

    Article  Google Scholar 

  3. Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 127–141. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Babic, D., Hu, A.J.: Calysto: scalable and precise extended static checking. In: International Conference on Software Engineering, pp. 211–220 (2008)

    Google Scholar 

  5. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)

    MATH  Google Scholar 

  6. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded Model Checking. In: Advances in Computers. Academic Press, London (2003)

    Google Scholar 

  8. Bonet, M.L., John, K.S.: Efficiently calculating evolutionary tree measures using SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 4–17. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Broering, E., Lokam, S.V.: Width-based algorithms for SAT and CIRCUIT-SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 162–171. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Corblin, F., Bordeaux, L., Fanchon, E., Hamadi, Y., Trilling, L.: Connections and integration with SAT solvers: A survey and a case study in computational biology. In: Hybrid Optimization: the 10 years of CPAIOR. Springer, Heidelberg (2010)

    Google Scholar 

  11. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5, 394–397 (1962)

    Article  MATH  Google Scholar 

  12. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)

    Article  MATH  Google Scholar 

  13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Eén, N., Sörensson, N.: MiniSAT, version 2.2.0 (2010), http://minisat.se/downloads/minisat-2.2.0.tar.gz

  15. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: National Conference on Artificial Intelligence, pp. 431–437 (July 1998)

    Google Scholar 

  18. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp. 2318–2323. Morgan Kaufmann Publishers Inc., San Francisco (2007)

    Google Scholar 

  19. Larrabee, T.: Test pattern generation using Boolean satisfiability. IEEE Transactions on Computer-Aided Design 11(1), 4–15 (1992)

    Article  Google Scholar 

  20. Lynce, I., Marques-Silva, J.: Building state-of-the-art sat solvers. In: Proceedings of the 15th Eureopean Conference on Artificial Intelligence (ECAI 2002), pp. 166–170. IOS Press, Amsterdam (2002)

    Google Scholar 

  21. Manolios, P., Srinivasan, S.K.: A parameterized benchmark suite of hard pipelined-machine-verification problems. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 363–366. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 62–74. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Marques-Silva, J., Sakallah, K.A.: GRASP: A new search algorithm for satisfiability. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 220–227. Springer, Heidelberg (1996)

    Google Scholar 

  24. Marques-Silva, J., Sakallah, K.A.: GRASP-A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

    Article  Google Scholar 

  25. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash functions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems. In: National Conference on Artificial Intelligence, pp. 459–465 (1992)

    Google Scholar 

  27. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Engineering an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (June 2001)

    Google Scholar 

  28. Nam, G.-J., Sakallah, K.A., Rutenbar, R.A.: Satisfiability-based layout revisited: Detailed routing of complex FPGA s via search-based boolean SAT. In: International Symposium on Field-Programmable Gate Arrays (February 1999)

    Google Scholar 

  29. Narain, S.: Network configuration management via model finding. In: Conference on Systems Administration, pp. 155–168 (2005)

    Google Scholar 

  30. Pipatsrisawat, K., Darwiche, A.: Rsat 1.03: Sat solver description. Technical Report D–152, Automated Reasoning Group, Computer Science Department, UCLA (2006)

    Google Scholar 

  31. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Rice, J.A.: Mathematical Statistics and Data Analysis. Duxbury Press, Boston (2006)

    Google Scholar 

  33. Selman, B., Kautz, H.: Planning as satisfiability. In: European Conference on Artificial Intelligence, pp. 359–363 (1992)

    Google Scholar 

  34. Sinz, C., Iser, M.: Problem-sensitive restart heuristics for the DPLL procedure. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 356–362. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  35. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1), 75–97 (2003)

    Google Scholar 

  36. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  37. Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and vliw microprocessors. J. Symb. Comput. 35(2), 73–106 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katebi, H., Sakallah, K.A., Marques-Silva, J.P. (2011). Empirical Study of the Anatomy of Modern Sat Solvers. In: Sakallah, K.A., Simon, L. (eds) Theory and Applications of Satisfiability Testing - SAT 2011. SAT 2011. Lecture Notes in Computer Science, vol 6695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21581-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21580-3

  • Online ISBN: 978-3-642-21581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics