Abstract
We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems. For this purpose we develop a Prover-Delayer game which models the running time of DPLL procedures and we establish an information-theoretic method to obtain lower bounds to the running time of parameterized DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole principle and to the ordering principle. As our main application we study the DPLL procedure for the problem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires n Ω(k) steps for a non-trivial distribution of graphs close to the critical threshold. For the restricted case of tree-like Parameterized Resolution, this result answers a question asked in [11] of understanding the Resolution complexity of this family of formulas.
Nominated as Best Paper candidate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is tractable. SIAM Journal on Computing 38(4), 1347–1363 (2008)
Amano, K.: Subgraph isomorphism on AC0 circuits. Computational Complexity 19(2), 183–210 (2010)
Beame, P., Impagliazzo, R., Sabharwal, A.: The resolution complexity of independent sets and vertex covers in random graphs. Comput. Complex. 16(3), 245–297 (2007)
Beame, P., Karp, R.M., Pitassi, T., Saks, M.E.: The efficiency of resolution and Davis-Putnam procedures. SIAM J. Comput. 31(4), 1048–1075 (2002)
Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. 22, 319–351 (2004)
Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: Proc. 37th IEEE Symposium on the Foundations of Computer Science, pp. 274–282 (1996)
Beame, P.W., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P.: Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Mathematical Society 73(3), 1–26 (1996)
Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the ACM 48(2), 149–169 (2001)
Beyersdorff, O., Galesi, N., Lauria, M.: Hardness of parameterized resolution. Technical Report TR10-059, Electronic Colloquium on Computational Complexity (2010)
Beyersdorff, O., Galesi, N., Lauria, M.: A lower bound for the pigeonhole principle in tree-like resolution by asymmetric prover-delayer games. Information Processing Letters 110(23), 1074–1077 (2010)
Beyersdorff, O., Galesi, N., Lauria, M., Razborov, A.: Parameterized bounded-depth Frege is not optimal. Technical Report TR10-198, Electronic Colloquium on Computational Complexity (2010)
Blake, A.: Canonical expressions in boolean algebra. PhD thesis, University of Chicago (1937)
Bonet, M.L., Esteban, J.L., Galesi, N., Johannsen, J.: On the relative complexity of resolution refinements and cutting planes proof systems. SIAM Journal on Computing 30(5), 1462–1484 (2000)
Bonet, M.L., Galesi, N.: Optimality of size-width tradeoffs for resolution. Computational Complexity 10(4), 261–276 (2001)
Chen, Y., Flum, J.: The parameterized complexity of maximality and minimality problems. Annals of Pure and Applied Logic 151(1), 22–61 (2008)
Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4), 759–768 (1988)
Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)
Dantchev, S.S., Martin, B., Szeider, S.: Parameterized proof complexity. In: Proc. 48th IEEE Symposium on the Foundations of Computer Science, pp. 150–160 (2007)
Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)
Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 210–215 (1960)
Gao, Y.: Data reductions, fixed parameter tractability, and random weighted d-CNF satisfiability. Artificial Intelligence 173(14), 1343–1366 (2009)
Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)
Pudlák, P., Impagliazzo, R.: A lower bound for DLL algorithms for SAT. In: Proc. 11th Symposium on Discrete Algorithms, pp. 128–136 (2000)
Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)
Rossman, B.: On the constant-depth complexity of k-clique. In: Proc. 40th ACM Symposium on Theory of Computing, pp. 721–730 (2008)
Rossman, B.: The monotone complexity of k-clique on random graphs. In: Proc. 51th IEEE Symposium on the Foundations of Computer Science, pp. 193–201. IEEE Computer Society, Los Alamitos (2010)
Segerlind, N., Buss, S.R., Impagliazzo, R.: A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing 33(5), 1171–1200 (2004)
Stalmark, G.: Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33, 277–280 (1996)
Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beyersdorff, O., Galesi, N., Lauria, M. (2011). Parameterized Complexity of DPLL Search Procedures. In: Sakallah, K.A., Simon, L. (eds) Theory and Applications of Satisfiability Testing - SAT 2011. SAT 2011. Lecture Notes in Computer Science, vol 6695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-21581-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21580-3
Online ISBN: 978-3-642-21581-0
eBook Packages: Computer ScienceComputer Science (R0)