
This is a repository copy of Parameterized complexity of DPLL search procedures.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/74773/

Proceedings Paper:
Beyersdorff, O, Galesi, N and Lauria, M (2011) Parameterized complexity of DPLL search
procedures. In: Sakallah, KA and Simon, L, (eds.) Theory and Applications of Satisfiability
Testing - SAT 2011. SAT 2011, 19-22 Jun 2011, Ann Arbor, MI, USA. Springer Verlag , 5 -
18 . ISBN 978-3-642-21580-3

https://doi.org/10.1007/978-3-642-21581-0_3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Parameterized Complexity of DPLL Search

Procedures★

Olaf Beyersdorff1, Nicola Galesi2★★, and Massimo Lauria2

1 Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany
2 Dipartimento di Informatica, Sapienza Università di Roma, Italy

Abstract. We study the performance of DPLL algorithms on param-
eterized problems. In particular, we investigate how difficult it is to
decide whether small solutions exist for satisfiability and other combi-
natorial problems. For this purpose we develop a Prover-Delayer game
which models the running time of DPLL procedures and we establish
an information-theoretic method to obtain lower bounds to the running
time of parameterized DPLL procedures. We illustrate this technique by
showing lower bounds to the parameterized pigeonhole principle and to
the ordering principle. As our main application we study the DPLL pro-
cedure for the problem of deciding whether a graph has a small clique.
We show that proving the absence of a k-clique requires n
(k) steps for a
non-trivial distribution of graphs close to the critical threshold. For the
restricted case of tree-like Parameterized Resolution, this result answers
a question asked in [11] of understanding the Resolution complexity of
this family of formulas.

1 Introduction

Resolution was introduced by Blake [12] and since the work of Robinson [25]
and Davis, Putnam, Logemann, and Loveland [19,20] has been highly employed
in proof search and automated theorem proving. In the last years, the study
of Resolution has gained great significance in at least two important fields of
computer science. (1) Proof complexity, where Resolution is one of the most
intensively investigated proof systems [1, 6, 8, 13, 16, 22, 30]. The study of lower
bounds for proof length in this system has opened the way to lower bounds in
much stronger proof systems [7,28]. (2) Algorithms for the satisfiability problem
of CNF formulas, where the DPLL algorithm [4, 19] is the core of the most
important and modern algorithms employed for the satisfiability problem [4,5].

Parameterized Resolution was recently introduced by Dantchev, Martin, and
Szeider [18] in the context of parameterized proof complexity, an extension of the

★ Part of this work was done while the first author was visiting Sapienza University of
Rome. This Research is part of the project “Limits of Theorem Proving” supported
by grant N. 20517 by the John Templeton Foundation.

★★ Partly supported by Sapienza Research Project: Complessità e Rappresentabilità
Compatta di Strutture Discrete.

proof complexity approach of Cook and Reckhow [17] to parameterized complex-
ity. Analogously to the case of Fixed Parameter Tractable (FPT) algorithms for
optimization problems, the study of Parameterized Resolution provides new ap-
proaches and insights to proof search and to proof complexity. Loosely speaking,
to refute a parameterized contradiction (F, k) in Parameterized Resolution we
have built-in access to new axioms, which encode some property on assignments.
In the most common case the new axioms are the clauses forbidding assignments
of hamming weight greater than k. We underline that only those axioms appear-
ing in the proof account for the proof length. Hence Parameterized DPLL refu-
tations can be viewed as traces of executions of a (standard) DPLL algorithm
in which some branches are cut because they falsify one of the new axioms.

In spite of its recent introduction, research in this direction is already active.
Gao [21] analyzes the effect of the standard DPLL algorithm on the problem
of weighted satisfiability for random d-CNFs. Beyersdorff et al. [11], using an
idea also developed in [15], proved that there are FPT efficient Parameterized
Resolution proofs for all bounded-width unsatisfiable CNF formulae. The discov-
ery of new implications for SAT-solving algorithms in Parameterized Resolution
appears to be a promising research field at a very early stage of investigation.

As our first contribution, we look inside the structure of Parameterized DPLL
giving a new information-theoretical characterization of proofs in terms of a two-
player game, the Asymmetric Prover-Delayer (APD) game. The APD-game was
also used in [10] to prove simplified optimal lower bounds for the pigeonhole
principle in tree-like classical Resolution. Compared to [10] we present here a
completely different analysis of APD-games based on an information-theoretical
argument which is new and interesting by itself.

Parameterized Resolution is also a refutational proof system for parameter-
ized contradictions. Hence proving proof length lower bounds for parameterized
contradictions is important in order to understand the strength of such a proof
system. Dantchev et al. [18] proved significant lower bounds for Parameterized
DPLL proofs of PHP and of the ordering principle (OP). Moreover, recently the
work [11] extended the PHP lower bounds to the case of parameterized dag-like
bounded-depth Frege.3

As our second contribution we provide a unified approach to reach significa-
tive lower bounds in Parameterized DPLL using the APD-game. As a simple
application of our characterization, we obtain the optimal lower bounds given
in [18] for PHP and OP.

It is a natural question what happens when we equip a proof system with
a more efficient way of encoding the exclusion of assignments with hamming
weight ≥ k, than just adding all possible clauses with k + 1 negated variables.
Dantchev et al. [18] proved that this is a significant point. They presented a
different and more efficient encoding, and showed that under this encoding PHP
admits efficient FPT Parameterized Resolution proofs.

3 The APD-game appeared also in the technical report [9], together with a lower
bound for dag-like Parameterized Resolution, but all results in [9] are subsumed and
improved by [11] and the present paper.

In the previous work [11] we investigated this question further and noticed
that for propositional encodings of prominent combinatorial problems like k-
independent set or k-clique, the separation between the two encodings vanishes.
Hence we proposed (see Question 5 in [11]) to study the performance of Pa-
rameterized Resolution on CNF encodings of such combinatorial problems and
in particular to prove lower bounds. This will capture the real proof-theoretic
strength of Parameterized Resolution, since it is independent of the encodings.
The k-clique principle (see also [3, 11] for similar principles) simply says that a
given graph contains a clique of size k. When applied on a graph not containing a
k-clique it is a contradiction. On the (k− 1)-partite complete graph the k-clique
principle admits efficient refutations in Parameterized Resolution.

As a third contribution, we prove significant lower bounds for the k-clique
principle in the case of Parameterized DPLL. Our k-clique formula is based on
random graphs distributed according to a simple variation of the Erdős-Rényi
model G(n, p). It is well known [23, Chapter 3] that when G is drawn according

to G(n, p) and p ≪ n− 2
k−1 , with high probability G has no k-clique.

The paper is organized as follows. Section 2 contains all preliminary notions
and definitions concerning fixed-parameter tractability, parameterized proof sys-
tems, and Parameterized Resolution. In Section 3 we define our asymmetric
Prover-Delayer game and establish its precise relation to the proof size in tree-
like Parameterized Resolution. In Section 4, as an example of the application
of the APD-game, we give a simplified lower bound for the pigeonhole princi-
ple in tree-like Parameterized Resolution. In Section 5 we introduce the formula
Clique(G, k) which is satisfiable if and only if there is a k-clique in the graph G

and we show that on a certain distribution of random graphs the following holds
with high probability: G has no k-clique and the size of the shortest refutation
of Clique(G, k) is n
(k). From an algorithmic perspective, this result can be for-
mulated as: any algorithm for k-clique which (i) cleverly selects a vertex and
branches in whether it is in the clique or not, (ii) deletes all its non-neighbors
and (iii) stops branching when there are no vertices left, must use at least n
(k)

steps for most random graphs with a certain edge probability.

2 Preliminaries

Parameterized complexity is a branch of complexity theory where problems are
analyzed in a finer way than in the classical approach: we say that a prob-
lem is fixed-parameter tractable (FPT) with parameter k if it can be solved in
time f(k)nO(1) for some computable function f of arbitrary growth. In this set-
ting classically intractable problems may have efficient solutions, assuming the
parameter is small, even if the total size of the input is large. Parameterized
complexity also has a completeness theory: many parameterized problems that
appear not to be fixed-parameter tractable have been classified as being com-
plete under fpt-reductions for complexity classes in the so-called weft hierarchy
W[1] ⊆ W[2] ⊆ W[3] ⊆

Consider the problem Weighted CNF Sat of finding a satisfying assign-
ment of Hamming weight at most k for a formula in conjunctive normal form.
Many combinatorial problems can be naturally encoded in Weighted CNF

Sat: finding a vertex cover of size at most k; finding a clique of size at least k;
or finding a dominating set of size at most k. In the theory of parameterized
complexity, the hardness of the Weighted CNF Sat problem is reflected by
the fact that it is W[2]-complete (see [11, 18]).

Dantchev, Martin, and Szeider [18] initiated the study of parameterized proof
complexity. After considering the notions of propositional parameterized tautolo-
gies and fpt-bounded proof systems, they laid the foundations for the study of
complexity of proofs in a parameterized setting. The problem Weighted CNF

Sat leads to parameterized contradictions:

Definition 1 (Dantchev et al. [18]). A parameterized contradiction is a pair
(F, k) consisting of a propositional formula F and k ∈ ℕ such that F has no
satisfying assignment of weight ≤ k.

The notions of a parameterized proof system and of fpt-bounded proof sys-
tems were also developed in [18]:

Definition 2 (Dantchev et al. [18]). A parameterized proof system for a
parameterized language L ⊆ �∗ × ℕ is a function P : �∗ × ℕ → �∗ × ℕ such
that rng(P) = L and P (x, k) can be computed in time O(f(k)∣x∣O(1)) for some
computable function f . The system P is fpt-bounded if there exist computable
functions s and t such that every (x, k) ∈ L has a P -proof (y, k′) with ∣y∣ ≤
s(k)∣x∣O(1) and k′ ≤ t(k).

The main motivation behind the work of [18] was that of generalizing the
classical approach of Cook and Reckhow [17] to the parameterized case and
that of working towards a separation of complexity classes as FPT and W[2] by
techniques developed in proof complexity.

2.1 Parameterized Resolution and Parameterized DPLL

A literal is a positive or negated propositional variable and a clause is a set of
literals. The width of a clause is the number of its literals. A clause is interpreted
as the disjunction of its literals and a set of clauses as the conjunction of the
clauses. Hence clause sets correspond to formulas in CNF. The Resolution system
is a refutation system for the set of all unsatisfiable CNF. Resolution gets its

name from its only rule, the Resolution rule {x}∪C {¬x}∪D

C∪D
for clauses C,D

and a variable x. The aim in Resolution is to demonstrate unsatisfiability of a
clause set by deriving the empty clause. If in a derivation every derived clause
is used at most once as a prerequisite of the Resolution rule, then the derivation
is called tree-like, otherwise it is called dag-like. The size of a Resolution proof
is the number of its clauses where multiple occurrences of the same clause are
counted separately.

For the remaining part of this paper we will concentrate on Parameterized
Resolution as introduced by Dantchev, Martin, and Szeider [18]. Parameterized

Resolution is a refutation system for the set of parameterized contradictions (cf.
Definition 1). Given a set of clauses F in variables x1, . . . , xn, a Parameterized
Resolution refutation of (F, k) is a Resolution refutation of the set of clauses
F ∪ {¬xi1 ∨ ⋅ ⋅ ⋅ ∨ ¬xik+1

∣ 1 ≤ i1 < ⋅ ⋅ ⋅ < ik+1 ≤ n}. Thus, in Parameterized
Resolution we have built-in access to all parameterized clauses of the form ¬xi1∨
⋅ ⋅ ⋅ ∨ ¬xik+1

. All these clauses are available in the system, but when measuring
the size of a refutation we only count those which occur in the refutation.

If refutations are tree-like we speak of tree-like Parameterized Resolution.
Running parameterized DPLL procedures on parameterized contradictions pro-
duces tree-like Parameterized Resolution refutations, thus tree-like Resolution
proof lengths are connected with the running time of DPLL procedures. Exactly
as in usual tree-like Resolution, a tree-like Parameterized refutation of (F, k)
can equivalently be described as a boolean decision tree where inner nodes are
labeled with variables from F and leaves are labeled either with clauses from F

or with parameterized clauses ¬xi1 ∨ ⋅ ⋅ ⋅ ∨ ¬xik+1
.

3 Asymmetric Prover-Delayer Games for DPLL

The original Prover-Delayer game for tree-like Resolution has been developed by
Pudlák and Impagliazzo [24], and arises from the well-known fact that a tree-like
Resolution refutation for a CNF F can be viewed as a decision tree which solves
the search problem of finding a clause of F falsified by a given assignment. In
the game, Prover queries a variable and Delayer either gives it a value or leaves
the decision to Prover and receives one point. The number of Delayer’s points
at the end of the game bounds from below the height of the proof tree. Our
new game, in contrast, assigns points to the Delayer asymmetrically (log c0 and
log c1) according to two functions c0 and c1 (s.t. c−1

0 +c−1
1 = 1) which depend on

the principle, the variable queried, and the current partial assignment. In fact,
the original Prover-Delayer game of [24] is the case where c0 = c1 = 2.

Loosely speaking, we interpret the inverse of the score functions as a way to
define a distribution on the choices made by the DPLL algorithm. Under this
view the Delayer’s score at each step is just the entropy of the bit encoding
the corresponding choice. Since root-to-leaf paths are in bijection with leaves,
this process induces a distribution on the leaves. Hence the entropy collected on
the path is the entropy of the corresponding leaf choice. In this interpretation,
the asymmetric Prover-Delayer game becomes a challenge between Prover, who
wants to end the game giving up little entropy, and Delayer, who wants to get a
lot of it. This means that the average score of the Delayer is a measure (actually
a lower bound) of the number of leaves. In our setup the DPLL algorithm decides
the Prover queries, and the score function defines the distribution on paths. The
Delayer role corresponds to a conditioning on such distribution.

Let (F, k) be a parameterized contradiction where F is a set of clauses in
n variables x1, . . . , xn. We define a Prover-Delayer game: Prover and Delayer
build a (partial) assignment to x1, . . . , xn. The game is over as soon as the
partial assignment falsifies either a clause from F or a parameterized clause

¬xi1 ∨⋅ ⋅ ⋅∨¬xik+1
where 1 ≤ i1 < ⋅ ⋅ ⋅ < ik+1 ≤ n. The game proceeds in rounds.

In each round, Prover suggests a variable xi, and Delayer either chooses a value
0 or 1 for xi or leaves the choice to the Prover. In this last case the Prover sets
the value and the Delayer gets some points. The number of points Delayer earns
depends on the variable xi, the assignment � constructed so far in the game,
and two functions c0 and c1. More precisely, the number of points that Delayer
will get is

0 if Delayer chooses the value,
log c0(xi, �) if Prover sets xi to 0, and
log c1(xi, �) if Prover sets xi to 1.

Moreover, the functions c0 and c1 are non negative and are chosen in such a way
that for each variable x and assignment �

1

c0(x, �)
+

1

c1(x, �)
= 1 (1)

holds. We remark that (1) is not strictly necessary for all � and x, but it must
hold at least for those assignments � and choices x of the Delayer that can
actually occur in any game with the Delayer strategy. We call this game the
(c0, c1)-game on (F, k). The connection of this game to size of proofs in tree-like
Parameterized Resolution is given by the next theorem:

Theorem 3. Let (F, k) be a parameterized contradiction and let c0 and c1 be
two functions satisfying (1) for all partial assignments � to the variables of F .
If (F, k) has a tree-like Parameterized Resolution refutation of size at most S,
then for each (c0, c1)-game played on (F, k) there is a Prover strategy (possibly
dependent on the Delayer) that gives the Delayer at most logS points.

Proof. Let (F, k) be a parameterized contradiction using variables x1, . . . , xn.
Choose any tree-like Parameterized Resolution refutation of (F, k) of size S and
interpret it as a boolean decision tree T for F . The decision tree T completely
specifies the query strategy for Prover: at the first step he will query the variable
labeling the root of T . Whatever decision is made regarding the value of the
queried variable, Prover moves to the root of the corresponding subtree and
queries the variable which labels it. This process induces a root-to-leaf walk on
T , and such walks are in bijection with the set of leafs.

To completely specify Prover’s strategy we need to explain how Prover chooses
the value of the queried variable in case Delayer asks him to. A game position is
completely described by the partial assignment � computed so far, and by the
variable x ∕∈ dom(�) queried at that moment. If the Prover is asked to answer

the query for x, the answer will be:

{

0 with probability 1
c0(x,�)

1 with probability 1
c1(x,�)

. Thus we are

dealing with a randomized Prover strategy. In a game played between our ran-
domized Prover and a specific Delayer D, we denote by pD,ℓ the probability of
such a game to end at a leaf ℓ. We call �D this distribution on the leaves. To
prove the theorem the following observation is crucial:

If the game ends at leaf ℓ, then Delayer D scores exactly log 1
pD,ℓ

points.

Before proving this claim, we show that it implies the theorem. The expected
score of a Delayer D is

H(�D) =
∑

ℓ

pD,ℓ log
1

pD,ℓ

which is the information-theoretic entropy of �D. Since the support of �D has
size at most S, we obtain H(�D) ≤ logS, because the entropy is maximized by
the uniform distribution. By fixing the random choices of the Prover, we can
force Delayer D to score at most logS points.

To prove the claim consider a leaf ℓ and the unique path that reaches it.
W. l. o. g. we assume that this path corresponds to the ordered sequence of
assignments x1 = �1, . . . , xm = �m. The probability of reaching the leaf is

pD,ℓ = p1p2 ⋅ ⋅ ⋅ pm

where pi is the probability of setting xi = �i conditioned on the previous choices.
If Prover chooses the value of the variable xi, the score Delayer D gets at step i

is
log c�i(xi, {x1 = �1, x2 = �2, . . . , xi−1 = �i−1})

which is exactly log 1
pi
. If Delayer makes the choice at step i, then pi = 1 and

the score is 0, which is also log 1
pi
. Thus the score of the game play is

m
∑

i=1

log
1

pi
= log

1
∏m

i=1 pi
= log

1

pD,ℓ

,

and this concludes the proof of the claim and the theorem. ⊓⊔

4 An Application of the Lower Bound Method

We will illustrate the use of asymmetric Prover-Delayer games with an appli-
cation to the pigeonhole principle PHPn+1

n . Variable xi,j for i ∈ [n + 1] and
j ∈ [n] indicates that pigeon i goes into hole j. PHPn+1

n consists of the clauses
⋁

j∈[n] xi,j for all pigeons i ∈ [n+1] and ¬xi1,j ∨¬xi2,j for all choices of distinct

pigeons i1, i2 ∈ [n + 1] and holes j ∈ [n]. We prove that PHPn+1
n is hard for

tree-like Parameterized Resolution.

Theorem 4. Any tree-like Parameterized Resolution refutation of (PHPn+1
n , k)

has size n
(k).

Proof. Let � be a partial assignment to the variables {xi,j ∣ i ∈ [n+1], j ∈ [n]}.
Let zi(�) = ∣{j ∈ [n] ∣ �(xi,j) = 0}∣, i. e., zi(�) is the number of holes already
excluded by � for pigeon i. We define

c0(xi,j , �) =
n− zi(�)

n− zi(�)− 1
and c1(xi,j , �) = n− zi(�)

which clearly satisfies (1). We now describe Delayer’s strategy in a (c0, c1)-game
played on (PHPn+1

n , k). If Prover asks for a value of xi,j , then Delayer decides
as follows:

set �(xi,j) = 0 if there exists i′ ∈ [n+ 1] ∖ {i} such that �(xi′,j) = 1 or
if there exists j′ ∈ [n] ∖ {j} such that �(xi,j′) = 1

set �(xi,j) = 1 if there is no j′ ∈ [n] with �(xi,j′) = 1 and zi(�) ≥ n− k

let Prover decide otherwise.

Intuitively, Delayer leaves the choice to Prover as long as pigeon i does not
already sit in a hole, there are at least k holes free for pigeon i, and there is no
other pigeon sitting already in hole j. If Delayer uses this strategy, then clauses
from PHPn+1

n will not be violated in the game, i. e., a contradiction will always
be reached on some parameterized clause. To verify this claim, let � be a partial
assignment constructed during the game with w(�) ≤ k (we denote the the
weight of � by w(�)). Then, for every pigeon which has not been assigned to
a hole yet, there are at least k holes where it could go, and only w(�) of these
are already occupied by other pigeons. Thus � can be extended to a one-one
mapping of exactly k pigeons to holes.

Therefore, at the end of the game exactly k+1 variables have been set to 1.
Let us denote by p the number of variables set to 1 by Prover and let d be the
number of 1’s assigned by Delayer. As argued before p+ d = k+1. Let us check
how many points Delayer earns in this game. If Delayer assigns 1 to a variable
xi,j , then pigeon i was not assigned to a hole yet and, moreover, there must be
n− k holes which are already excluded for pigeon i by �, i. e., for some J ⊆ [n]
with ∣J ∣ = n− k we have �(xi,j′) = 0 for all j′ ∈ J . Most of these 0’s have been
assigned by Prover, as Delayer has only assigned a 0 to xi,j′ when some other
pigeon was already sitting in hole j′, and there can be at most k such holes.
Thus, before Delayer sets �(xi,j) = 1, she has already earned points for at least
n− 2k variables xi,j′ , j

′ ∈ J , yielding at least

n−2k−1
∑

z=0

log
n− z

n− z − 1
= log

n−2k−1
∏

z=0

n− z

n− z − 1
= log

n

2k
= log n− log 2k

points for the Delayer. Note that because Delayer never allows a pigeon to go
into more than one hole, she will earn at least the number of points calculated
above for each of the d variables which she sets to 1.

If, conversely, Prover sets variable xi,j to 1, then Delayer gets log(n− zi(�))
points for this, but she also receives points for most of the zi(�) variables set to
0 before that. Thus, in this case Delayer earns on pigeon i at least

log (n− zi(�)) +

zi(�)−k−1
∑

z=0

log
n− z

n− z − 1
=

log (n− zi(�)) + log
n

n− zi(�) + k
= log n− log

n− zi(�) + k

n− zi(�)
≥ log n− log k

points. In total, Delayer gets at least

d(log n− log 2k) + p(log n− log k) ≥ k(log n− log 2k)

points in the game. By Theorem 3, we obtain (n
2k)

k
as a lower bound to the size

of each tree-like Parameterized Resolution refutation of (PHPn+1
n , k). ⊓⊔

As a second example we discuss the DPLL performance on the parameterized
ordering principle OP , also called least element principle. The principle claims
that any finite partially ordered set has a minimal element. There is a direct
propositional translation of OP to a family OPn of unsatisfiable CNFs. Each
CNF OPn expresses that there exists a partially ordered set of size n such that
any element has a predecessor. The ordering principle has the following clauses:

¬xi,j ∨ ¬xj,i for every i, j (Antisymmetry)

¬xi,j ∨ ¬xj,k ∨ xi,k for every i, j, k (Transitivity)
⋁

j∈[n]∖{i}

xj,i for every i (Predecessor)

With respect to parameterization the ordering principles are interesting. Both
OP and the linear ordering principle (LOP), which additionally assumes the or-
der to be total, do not admit short tree-like Resolution refutations [14] and have
general Resolution refutations of polynomial size [29]. In the parameterized set-
ting things are different: LOP has short tree-like refutations (see [11]) while OP
does not and provides a separation between tree-like and dag-like Parameterized
Resolution. The following theorem has been first proved in [18]. Their proof is
based on a model-theoretic criterion, while ours is based on the Prover-Delayer
game. The proof will appear in the full version of this paper (see also [9]).

Theorem 5. Any tree-like Parameterized Resolution refutation of (OPn, k) has
size n
(k).

5 DPLL and the Decision Tree Complexity of k-Clique

Instead of adding parameterized clauses of the form ¬xi1 ∨⋅ ⋅ ⋅∨¬xik+1
, there are

also more succinct ways to enforce only satisfying assignments of weight ≤ k.
One such method was considered in [18] where for a formula F in n variables
x1, . . . , xn and a parameter k, a new formula M = M(F, k) is computed such
that F ∧M is satisfiable if and only if F has a satisfying assignment of weight
at most k. The formula M uses new variables si,j , where i ∈ [k] and j ∈ [n], and
consists of the clauses

¬xj ∨

k
⋁

i=1

si,j and ¬si,j ∨ xj for i ∈ [k] and j ∈ [n] (2)

¬si,j ∨ ¬si,j′ for i ∈ [k] and j ∕= j′ ∈ [n] (3)

¬si,j ∨ ¬si′,j for i ∕= i′ ∈ [k] and j ∈ [n]. (4)

The clauses (2) express the fact that an index i is associated to a variable xj

if and only if such variable is set to true. The fact that the association is an
injective function is expressed by the clauses (3) and (4).

In [11] we argue that the clique formulas are “invariant” with respect to this
transformation, thus its classical proof complexity is equivalent to its parame-
terized proof complexity (in both the formulation with explicit parameterized
axioms and the succinct encoding). Therefore in [11] we posed the question of de-
termining the complexity of the clique formulas in Resolution. Theorem 7 below
provides an answer to this question for the tree-like case.

Our study focuses on the average-case complexity of proving the absence of a
k-clique in random graphs distributed according to a variation of the Erdős-Rényi
model G(n, p). It is known that k-cliques appear at the threshold probability

p∗ = n− 2
k−1 . If p < p∗, then with high probability there is no k-clique; while for

p > p∗ with high probability there are many. For p = p∗ there is a k-clique with
constant probability.

The complexity of k-clique has been already studied in restricted computa-
tional models by Rossman [26, 27]. He shows that in these models any circuit
which succeeds with good probability on graph distributions close to the critical
threshold requires size
(n

k
4), and even matching upper bounds exist in these

models [2, 27]. Since we want to study negative instances of the clique problem,
we focus on probability distributions with p < p∗. To ease the proof presentation
we will prove a lower bound for a slightly sparser distribution. We now give the
CNF formulation of a statement claiming that a k-clique exists in a graph.

Definition 6. Given a graph G = (V,E) and a parameter k, Clique(G, k) is a
formula in conjunctive normal form containing the following clauses

⋁

v∈V

xi,v for every i ∈ [k] (5)

¬xi,u ∨ ¬xj,v for every i, j ∈ [k], i ∕= j and every {u, v} ∕∈ E (6)

¬xi,u ∨ ¬xi,v for every u ∕= v ∈ V . (7)

Clearly, the formula Clique(G, k) is satisfiable if and only if the graph G has
a clique of size k.

We now describe a family of hard graph instances for k-clique: such graphs
have a simplified structure to make the proof more understandable. We also
restrict the formula, which makes it easier. This only strengthens eventual lower
bounds. We consider a random graph G on kn vertices. The set of vertices V

is divided into k blocks of n vertices each, named V1, V2, . . . , Vk. Edges may be
present only between vertices of different blocks. The random variable in the
graph is the set of edges. For any constant � and any pair of vertices (u, v) with
u ∈ Vi, v ∈ Vi′ and i < i′, the edge {u, v} is present with probability

p = n−(1+�) 2
k−1 .

We call this distribution of graphs G�. Notice that all graphs in G� are properly
colorable with k colors. Later we will focus on a specific range for �.

In a k-colorable graph, each clique contains at most one vertex per color
class. Because of this observation we can simplify the k-clique formula in the
following way, which we call ℎ(G)

⋁

v∈Vi

xv for every i ∈ [k] (8)

¬xu ∨ ¬xv for every {u, v} ∕∈ E(G). (9)

We omit the parameter k in the notation of ℎ to keep notation as simple as
possible. We now see that a lower bound to the size of a (tree-like) Resolution
refutation of ℎ(G) transfers to the same lower bound for Clique(G, k).

Fact 1 Let G be a k-colorable graph. Then each (tree-like) Resolution refutation
of Clique(G, k) can be transformed into a (tree-like) Resolution refutation of
ℎ(G) of the same size (with the partition in ℎ(G) induced by the coloring).

A comment regarding the encoding is required. In [3] formulas similar to
Clique(G, k) and ℎ(G) have been studied for the dual problem of independent
sets. They study the case of k =
(n), so the former encoding has a lower bound
because it contains clauses of a non-trivial pigeonhole principle. In the param-
eterized framework this is not necessarily true, since k is small and PHPk

k−1 is
feasible here.

We will now show that for a random graph G ∈ G� any decision tree which
proves unsatisfiability of k-clique has size n
(k(1−�)) with high probability. To
show that k-clique requires refutations of size n
(k(1−�)) it suffices to exhibit
two score functions c0 and c1 and a Delayer strategy such that the Delayer is
guaranteed to score
(k(1 − �) log n) points in any game played against any
Prover.

Theorem 7. For any 0 < � < 1. For a random G ∈ G� the k-clique CNF
requires tree-like Parameterized Resolution refutations of size n
(k(1−�)) with
high probability.

Proof. Let G be a random graph distributed according to G�. For a set S of
vertices, let � c(S) be the set of common neighbors of S. We first show that with
high probability the following properties hold:

1. G has no clique of size k;
2. For any set S of less than k

4 vertices in distinct blocks, ∣� c(S)∩Vb∣ ≥ n
(1−�)

for any block Vb disjoint from S.

For item 1: the expected number of k-cliques in G is nkp(
k

2) = n−k�. By
Markov inequality, the probability of the existence of a single k-clique is at most
the expected value.

For item 2: it is sufficient to show the statement for sets of size exactly k
4 −1.

Fix any such set S, and fix any block Vb which does not contain vertices in this
set. We denote by Xi the random variable which is 1 when i ∈ � c(S), and 0

otherwise. Thus the size of Vb ∩ � c(S) is the sum of n independent variables.

Notice that Xi is 1 with probability p
k
4−1 ≥ n− 1+�

2 . Thus the expected value is

at least n
1−�
2 . We define T = n

1−�
2

2 . Since T = n
(1−�) and T is a constant
fraction of the expected value, by the Chernoff bound we obtain that Vb ∩ � (S)

has size less than T with probability at most e−n
(1−�)

. By the union bound on
the choices of block Vb and of set S of size k

4 − 1 we get item 2.
We now define functions c0 and c1 which are legal cost functions for an

asymmetric Prover-Delayer game played on the k-clique formula of the graph G.
We also show a Delayer strategy which is guaranteed to score
(k log T) points.
This, together with Theorem 3, implies the main statement.

For any partial assignment � we consider the set of vertices “chosen by �”,
which is {u ∣ �(xu) = 1}; any vertex which is the common neighbor of the chosen
set is called “good for �”. Notice that a good vertex for � can be set to 1 without
causing an immediate contradiction. Notice also that � may set to 0 some good
vertices. In particular we denote by Rb(�) the vertices of the block Vb which are
good for �, but are nevertheless set to 0 in �.

When asked for a variable xv, for some v ∈ Vb, the Delayer behaves according
to the following strategy:

– If � contains at least k
4 variables set to 1, the Delayer surrenders;

– if there is u such that �(xu) = 1 and {u, v} ∕∈ E(G), the Delayer answers 0;
– if Rb(�) has size at least T − 1, then the Delayer answers 1;
– otherwise the Delayer leaves the answer to the Prover.

During the game the invariant ∣Rb(�)∣ < T holds for every b ∈ [k]: the only
way such a set can increase in size is when Prover sets a good vertex in Vb to 0.
Thus the size of Rb(�) can only increase one by one. When it reaches T − 1 and
the Delayer is asked for a variable in that block, she will reply 1, so the size of
Rb(�) won’t increase any more.

Another important property of the Delayer strategy is that her decision to
answer 1 never falsifies a clause, since all blocks contain at least T good vertices
at any moment during the game. This follows from item 2 and from the fact that
the Delayer surrenders after k

4 vertices are set in �. This proves that no clause
in (8) can be falsified during the game.

Neither clauses in (9) can be falsified during the game: the Delayer imposes
answer 0 whenever a vertex is not good for �, which means that, if chosen, it
would not form a clique with the ones chosen before. It is also not possible that
the game ends by violating a parameterized clause as these are just weakenings
of the clauses (9). Therefore, the game only ends when the Delayer gives up.

For an assignment � and a vertex v ∈ Vb, let

c0 =
T − ∣Rb(�)∣

T − ∣Rb(�)∣ − 1
and c1 = T − ∣Rb(�)∣.

Because of the previous observations the values of c0 and c1 are always non-
negative. Furthermore notice that when ∣Rb(�)∣ = T − 1 Delayer never leaves
the choice to Prover, thus c0 is always well defined when the Delayer scores.

Consider a game play and the set of k
4 vertices chosen by the final partial

assignment �. We show that for any chosen vertex, the Delayer scores log T
points for queries in the corresponding block.

Fix the block b of a chosen vertex u. Consider the assignment � which corre-
sponds to the game step when xu is set to 1. Consider R = Rb(�). We identify
partial assignments �0 ⊂ �1 ⊂ . . . ⊂ �∣R∣−1 ⊂ � corresponding to the moments
in the game when Prover sets to 0 one of the variables indexed by R. For such
rounds the Delayer gets at least

∣R∣−1
∑

i=0

log
T − ∣Rb(�i)∣

T − ∣Rb(�i)∣ − 1
≥

∣R∣−1
∑

i=0

log
T − i

T − i− 1
= log(T)− log(T − ∣R∣)

points. Here the first inequality follows from the fact that any vertex which
is good at some stage of the game is also good in all previous stages. Thus
∣Rb(�i)∣ ≥ i.

Now we must consider two cases: either xu = 1 is set by Prover, or it is set
by Delayer. In the former case Delayer gets log(T −∣R∣) points for Prover setting
xu = 1. Together with the points for the previous zeros this yields log T points.
In the latter case Delayer gets 0 points as she set xu = 1 by herself, but now
∣R∣ = T −1 and she got already log T points for all the zeros assigned by Prover.
In both cases the total score of the Delayer is log T = 1−�

2 log n.

Since this score is obtained in at least k
4 blocks, we are done. ⊓⊔

Acknowledgments. We thank the anonymous referees for their insightful sug-
gestions which helped to improve the paper.

References

1. M. Alekhnovich and A. A. Razborov. Resolution is not automatizable unless W[P]
is tractable. SIAM Journal on Computing, 38(4):1347–1363, 2008. 1

2. K. Amano. Subgraph isomorphism on AC0 circuits. Computational Complexity,
19(2):183–210, 2010. 10

3. P. Beame, R. Impagliazzo, and A. Sabharwal. The resolution complexity of inde-
pendent sets and vertex covers in random graphs. Comput. Complex., 16(3):245–
297, 2007. 3, 11

4. P. Beame, R. M. Karp, T. Pitassi, and M. E. Saks. The efficiency of resolution
and Davis-Putnam procedures. SIAM J. Comput., 31(4):1048–1075, 2002. 1

5. P. Beame, H. A. Kautz, and A. Sabharwal. Towards understanding and harnessing
the potential of clause learning. J. Artif. Intell. Res., 22:319–351, 2004. 1

6. P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In Proc.

37th IEEE Symposium on the Foundations of Computer Science, pages 274–282,
1996. 1

7. P. W. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, and P. Pudlák. Lower bounds
on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Mathematical

Society, 73(3):1–26, 1996. 1

8. E. Ben-Sasson and A. Wigderson. Short proofs are narrow - resolution made simple.
Journal of the ACM, 48(2):149–169, 2001. 1

9. O. Beyersdorff, N. Galesi, and M. Lauria. Hardness of parameterized resolution.
Technical Report TR10-059, Electronic Colloquium on Computational Complexity,
2010. 2, 9

10. O. Beyersdorff, N. Galesi, and M. Lauria. A lower bound for the pigeonhole prin-
ciple in tree-like resolution by asymmetric prover-delayer games. Information Pro-

cessing Letters, 110(23):1074–1077, 2010. 2
11. O. Beyersdorff, N. Galesi, M. Lauria, and A. Razborov. Parameterized bounded-

depth Frege is not optimal. Technical Report TR10-198, Electronic Colloquium
on Computational Complexity, 2010. 1, 2, 3, 4, 9, 10

12. A. Blake. Canonical expressions in boolean algebra. PhD thesis, University of
Chicago, 1937. 1

13. M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johannsen. On the relative complexity
of resolution refinements and cutting planes proof systems. SIAM Journal on

Computing, 30(5):1462–1484, 2000. 1
14. M. L. Bonet and N. Galesi. Optimality of size-width tradeoffs for resolution.

Computational Complexity, 10(4):261–276, 2001. 9
15. Y. Chen and J. Flum. The parameterized complexity of maximality and minimality

problems. Annals of Pure and Applied Logic, 151(1):22–61, 2008. 2
16. V. Chvátal and E. Szemerédi. Many hard examples for resolution. J. ACM,

35(4):759–768, 1988. 1
17. S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof

systems. The Journal of Symbolic Logic, 44(1):36–50, 1979. 2, 4
18. S. S. Dantchev, B. Martin, and S. Szeider. Parameterized proof complexity. In

Proc. 48th IEEE Symposium on the Foundations of Computer Science, pages 150–
160, 2007. 1, 2, 4, 9

19. M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962. 1

20. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7:210–215, 1960. 1

21. Y. Gao. Data reductions, fixed parameter tractability, and random weighted d-
CNF satisfiability. Artificial Intelligence, 173(14):1343–1366, 2009. 2

22. A. Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.
1

23. S. Janson, T. L̷uczak, and A. Ruciński. Random Graphs. Wiley, 2000. 3
24. P. Pudlák and R. Impagliazzo. A lower bound for DLL algorithms for SAT. In

Proc. 11th Symposium on Discrete Algorithms, pages 128–136, 2000. 5
25. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal

of the ACM, 12:23–41, 1965. 1
26. B. Rossman. On the constant-depth complexity of k-clique. In Proc. 40th ACM

Symposium on Theory of Computing, pages 721–730, 2008. 10
27. B. Rossman. The monotone complexity of k-clique on random graphs. In Proc.

51th IEEE Symposium on the Foundations of Computer Science, pages 193–201.
IEEE Computer Society, 2010. 10

28. N. Segerlind, S. R. Buss, and R. Impagliazzo. A switching lemma for small re-
strictions and lower bounds for k-DNF resolution. SIAM Journal on Computing,
33(5):1171–1200, 2004. 1

29. G. Stalmark. Short resolution proofs for a sequence of tricky formulas. Acta

Informatica, 33:277–280, 1996. 9
30. A. Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987. 1

	Parameterized Complexity of DPLL Search Procedures

