Skip to main content

Structural Similarity-Based Affine Approximation and Self-similarity of Images Revisited

  • Conference paper
Image Analysis and Recognition (ICIAR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6754))

Included in the following conference series:

Abstract

Numerical experiments indicate that images, in general, possess a considerable degree of affine self-similarity, that is, blocks are well approximated in root mean square error (RMSE) by a number of other blocks when affine greyscale transformations are employed. This has led to a simple L 2-based model of affine image self-similarity which includes the method of fractal image coding (cross-scale, affine greyscale similarity) and the nonlocal means denoising method (same-scale, translational similarity). We revisit this model in terms of the structural similarity (SSIM) image quality measure, first deriving the optimal affine coefficients for SSIM-based approximations, and then applying them to various test images. We show that the SSIM-based model of self-similarity removes the “unfair advantage” of low-variance blocks exhibited in L 2-based approximations. We also demonstrate experimentally that the local variance is the principal factor for self-similarity in natural images both in RMSE and in SSIM-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modelling and Simulation 4, 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Processing 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  3. Zhang, D., Wang, Z.: Image information restoration based on long-range correlation. IEEE Trans. Circuits and Systems for Video Tech. 12, 331–341 (2002)

    Article  Google Scholar 

  4. Etemoglu, C., Cuperman, V.: Structured vector quantization using linear transforms. IEEE Trans. Signal Processing 51, 1625–1631 (2003)

    Article  MathSciNet  Google Scholar 

  5. Ebrahimi, M., Vrscay, E.R.: Solving the inverse problem of image zooming using “Self-examples”. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 117–130. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Elad, M., Datsenko, D.: Example-based regularization deployed to super-resolution reconstruction of a single image. The Computer Journal 50, 1–16 (2007)

    MATH  Google Scholar 

  7. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22, 56–65 (2002)

    Article  Google Scholar 

  8. Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1988)

    MATH  Google Scholar 

  9. Lu, N.: Fractal Imaging. Academic Press, New York (1997)

    MATH  Google Scholar 

  10. Ghazel, M., Freeman, G., Vrscay, E.R.: Fractal image denoising. IEEE Trans. Image Processing 12, 1560–1578 (2003)

    Article  Google Scholar 

  11. Alexander, S.K., Vrscay, E.R., Tsurumi, S.: A simple, general model for the affine self-similarity of images. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 192–203. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. La Torre, D., Vrscay, E.R., Ebrahimi, M., Barnsley, M.F.: Measure-valued images, associated fractal transforms and the self-similarity of images. SIAM J. Imaging Sci. 2, 470–507 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, Z., Bovik, A.C.: Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine 26(1), 98–117 (2009)

    Article  Google Scholar 

  14. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

  15. Wainwright, M.J., Schwartz, O., Simoncelli, E.P.: Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons. In: Rao, R., et al. (eds.) Probabilistic Models of the Brain: Perception and Neural Function, pp. 203–222. MIT Press, Cambridge (2002)

    Google Scholar 

  16. Brunet, D., Vrscay, E.R., Wang, Z.: Structural similarity-based approximation of signals and images using orthogonal bases. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 11–22. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Brunet, D., Vrscay, E.R., Wang, Z.: A class of image metrics based on the structural similarity quality index. In: 8th International Conference on Image Analysis and Recognition (ICIAR 2011), Burnaby, BC, Canada (June 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brunet, D., Vrscay, E.R., Wang, Z. (2011). Structural Similarity-Based Affine Approximation and Self-similarity of Images Revisited. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21596-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21596-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21595-7

  • Online ISBN: 978-3-642-21596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics