Skip to main content

Road Surface Marking Classification Based on a Hierarchical Markov Model

  • Conference paper
Image Analysis and Recognition (ICIAR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6754))

Included in the following conference series:

  • 1160 Accesses

Abstract

This study deals with the estimation of the road surface markings and their class using an onboard camera in an Advanced Driver Assistance System (ADAS). The proposed classification is performed in 3 successive steps corresponding to 3 levels of abstraction from the pixel to the object level through the connected-component one. At each level, a Markov Random Field models the a priori knowledge about object intrinsic features and object interactions, in particular spatial interactions. The proposed algorithm has been applied to simulated data simulated in various road configurations: dashed or continuous lane edges, road input, etc. These first results are very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aufrere, R., Chapuis, R., Chausse, F.: A model-driven approach for real-time road recognition. MVA 13(2), 95–107 (2001)

    Google Scholar 

  2. Benboudjema, D., Pieczynski, W.: Unsupervised statistical segmentation of non stationary images using triplet markov fields. IEEE PAMI 29(8), 1367–1378 (2007)

    Article  Google Scholar 

  3. Besag, J.: On the statistical analysis of dirty pictures. J. of the Royal Statistical Society, Series B 48, 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Bishop, R.: Intelligent Vehicle Technologies and Trends. Artech House, Inc., Boston (2005)

    Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  6. Chen, Y., Zhu, L., Lin, A., Yuille, C., Zhang, H.: Rapid inference on a novel and/or graph for object detection, segmentation and parsing. In: NIPS 2007 Proc., Vancouver, Canada (2007)

    Google Scholar 

  7. Chen, Y., Zhu, L., Yuille, A., Zhang, H.: Unsupervised learning of probabilistic object models (poms) for object classification, segmentation and recognition using knowledge propagation. PAMI 31(10), 1747–1761 (2009)

    Article  Google Scholar 

  8. Descombes, X., Zerubia, J.: Marked point processes in image analysis. IEEE Signal Processing Magazine 19(5), 77–84 (2002)

    Article  Google Scholar 

  9. Gandhi, T., Trived, M.: Pedestrian protection systems: Issues, survey, and challenges. IEEE Trans. on Intelligent Transportation Systems 8, 413–430 (2007)

    Article  Google Scholar 

  10. Geman, D.: Random fields and inverse problems in imaging. Lectures Notes in Mathematics, vol. 1427 (2000)

    Google Scholar 

  11. Geman, S., Geman, D.: Stochastic relaxation gibbs distribution and bayesian restoration of images. IEEE PAMI 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  12. Gerónimo, D., López, A., Sappa, A., Graf, T.: Survey of pedestrian detection for advanced driver assistance systems. IEEE PAMI 32(7), 1239–1258 (2010)

    Article  Google Scholar 

  13. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE PAMI 26(2), 147–159 (2004)

    Article  MATH  Google Scholar 

  14. Labayrade, R., Douret, J., Aubert, D.: A multi-model lane detector that handles road singularities. In: IEEE ITSC 2006 Proc., Toronto, Canada, September 17-20 (2006)

    Google Scholar 

  15. Le Hégarat-Mascle, S., André, C.: Automatic detection of clouds and shadows on high resolution optical images. J. of Photogrammetry and Remote Sensing 64(4), 351–366 (2009)

    Article  Google Scholar 

  16. Le Hégarat-Mascle, S., Kallel, A., Descombes, X.: Ant colony optimization for image regularization based on a non-stationary markov modeling. IEEE Trans. on Image Processing 16(3), 865–878 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lombardi, P., Zanin, M., Messelodi, S.: Switching models for vision-based on-board road detection. In: IEEE ITSC 2005 Proc., Austria, September 13-16, pp. 67–72 (2005)

    Google Scholar 

  18. Ortner, M., Descombes, X., Zerubia, J.: A marked point process of rectangles and segments for automatic analysis of digital elevation models. IEEE PAMI 30(1), 353–363 (2008)

    Article  Google Scholar 

  19. Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection: A review. IEEE PAMI 28(5), 694–711 (2006)

    Article  Google Scholar 

  20. Vlacic, L., Parent, M., Harashima, F.: Intelligent Vehicle Technologies. Butterworth-Heinemann (2001)

    Google Scholar 

  21. Wang, R., Xu, Y.: Libin, and Z. Y. A vision-based road edge detection algorithm. In: IV 2002 Proc., France (2002)

    Google Scholar 

  22. Zhu, L., Chen, Y., Yuille, A.: Learning a hierarchical deformable template for rapid deformable object parsing. IEEE PAMI 32(6), 1029–1043 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ammar, M., Le Hégarat-Mascle, S., Mounier, H. (2011). Road Surface Marking Classification Based on a Hierarchical Markov Model. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21596-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21596-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21595-7

  • Online ISBN: 978-3-642-21596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics