Abstract
This study deals with the estimation of the road surface markings and their class using an onboard camera in an Advanced Driver Assistance System (ADAS). The proposed classification is performed in 3 successive steps corresponding to 3 levels of abstraction from the pixel to the object level through the connected-component one. At each level, a Markov Random Field models the a priori knowledge about object intrinsic features and object interactions, in particular spatial interactions. The proposed algorithm has been applied to simulated data simulated in various road configurations: dashed or continuous lane edges, road input, etc. These first results are very promising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aufrere, R., Chapuis, R., Chausse, F.: A model-driven approach for real-time road recognition. MVA 13(2), 95–107 (2001)
Benboudjema, D., Pieczynski, W.: Unsupervised statistical segmentation of non stationary images using triplet markov fields. IEEE PAMI 29(8), 1367–1378 (2007)
Besag, J.: On the statistical analysis of dirty pictures. J. of the Royal Statistical Society, Series B 48, 259–302 (1986)
Bishop, R.: Intelligent Vehicle Technologies and Trends. Artech House, Inc., Boston (2005)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI 23(11), 1222–1239 (2001)
Chen, Y., Zhu, L., Lin, A., Yuille, C., Zhang, H.: Rapid inference on a novel and/or graph for object detection, segmentation and parsing. In: NIPS 2007 Proc., Vancouver, Canada (2007)
Chen, Y., Zhu, L., Yuille, A., Zhang, H.: Unsupervised learning of probabilistic object models (poms) for object classification, segmentation and recognition using knowledge propagation. PAMI 31(10), 1747–1761 (2009)
Descombes, X., Zerubia, J.: Marked point processes in image analysis. IEEE Signal Processing Magazine 19(5), 77–84 (2002)
Gandhi, T., Trived, M.: Pedestrian protection systems: Issues, survey, and challenges. IEEE Trans. on Intelligent Transportation Systems 8, 413–430 (2007)
Geman, D.: Random fields and inverse problems in imaging. Lectures Notes in Mathematics, vol. 1427 (2000)
Geman, S., Geman, D.: Stochastic relaxation gibbs distribution and bayesian restoration of images. IEEE PAMI 6(6), 721–741 (1984)
Gerónimo, D., López, A., Sappa, A., Graf, T.: Survey of pedestrian detection for advanced driver assistance systems. IEEE PAMI 32(7), 1239–1258 (2010)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE PAMI 26(2), 147–159 (2004)
Labayrade, R., Douret, J., Aubert, D.: A multi-model lane detector that handles road singularities. In: IEEE ITSC 2006 Proc., Toronto, Canada, September 17-20 (2006)
Le Hégarat-Mascle, S., André, C.: Automatic detection of clouds and shadows on high resolution optical images. J. of Photogrammetry and Remote Sensing 64(4), 351–366 (2009)
Le Hégarat-Mascle, S., Kallel, A., Descombes, X.: Ant colony optimization for image regularization based on a non-stationary markov modeling. IEEE Trans. on Image Processing 16(3), 865–878 (2007)
Lombardi, P., Zanin, M., Messelodi, S.: Switching models for vision-based on-board road detection. In: IEEE ITSC 2005 Proc., Austria, September 13-16, pp. 67–72 (2005)
Ortner, M., Descombes, X., Zerubia, J.: A marked point process of rectangles and segments for automatic analysis of digital elevation models. IEEE PAMI 30(1), 353–363 (2008)
Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection: A review. IEEE PAMI 28(5), 694–711 (2006)
Vlacic, L., Parent, M., Harashima, F.: Intelligent Vehicle Technologies. Butterworth-Heinemann (2001)
Wang, R., Xu, Y.: Libin, and Z. Y. A vision-based road edge detection algorithm. In: IV 2002 Proc., France (2002)
Zhu, L., Chen, Y., Yuille, A.: Learning a hierarchical deformable template for rapid deformable object parsing. IEEE PAMI 32(6), 1029–1043 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ammar, M., Le Hégarat-Mascle, S., Mounier, H. (2011). Road Surface Marking Classification Based on a Hierarchical Markov Model. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21596-4_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-21596-4_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21595-7
Online ISBN: 978-3-642-21596-4
eBook Packages: Computer ScienceComputer Science (R0)