Abstract
This paper proposes a classification-based method for automating the segmentation of the region of interest (ROI) in digital images of chromatographic plates. Image segmentation is performed in two phases. In the first phase an unsupervised learning method classifies the image pixels into three classes: frame, ROI or unknown. In the second phase, distance features calculated for the members of the three classes are used for deciding on the new label, ROI or frame, for each individual connected segment previously classified as unknown.The segmentation result is post-processed using a sequence of morphological operators before obtaining the final ROI rectangular area. The proposed methodology, which is the initial step for the development of a screening tool for Fabry disease, was successfully evaluated in a dataset of 58 chromatographic images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zarate, Y., Hopkin, R.: Fabry’s Disease. The Lancet. 372(9647), 1427–1435 (2008)
Linthorst, G.E., Vedder, A., Aerts, J.M., Hollak, C.E.: Screening for Fabry Disease Using Whole Blood Spots Fails to Identify One-third of Female Carriers. Clinica Chimica Acta. 353(1-2), 201–203 (2005)
Eng, C.M., Germain, D.P., Banikazemi, M., Warnock, D.G., Wanner, C., Hopkin, R.J., Bultas, J., Lee, P., Sims, K., Brodie, S.E., Pastores, G.M., Strotmann, J.M., Wilcox, W.R.: Fabry Disease: Guidelines for the Evaluation and Management of Multi-organ System Involvement. Genetics in Medicine 8(9), 539–548 (2006)
Gerasimov, A.V.: Use of the Software Processing of Scanned Chromatogram Images in Quantitative Planar Chromatography. J. of Anal. Chem. 59(4), 348–353 (2004)
Bajla, I., Hollander, I., Fluch, S., Burg, K., Kollar, M.: An Alternative Method for Electrophoretic Gel Image Analysis in the Gelmaster Software. Comput. Methods Programs Biomed. 77(3), 209–231 (2005)
Sousa, A.V., Mendonça, A.M., Campilho, A.: Chromatographic Pattern Classification. IEEE Trans. on Biomedical Engineering 55(6), 1687–1696 (2008)
Bajla, I., Rublík, F., Arendacká, B., Farkaš, I., Hornišová, K., Štolc, S., Witkovský, V.: Segmentation and Supervised Classification of Image Objects in Epo Doping-control. Machine Vision and Applications 20(4), 243–259 (2009)
Sousa, A.V., Aguiar, R., Mendonça, A.M., Campilho, A.: Automatic Lane and Band Detection in Images of Thin Layer Chromatography. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 158–165. Springer, Heidelberg (2004)
Mendonça, A.M., Sousa, A.V., Sá-Miranda, M.C., Campilho, A.: Automatic segmentation of chromatographic images for region of interest delineation. SPIE Medical Imaging (2011)
Dempster, A., Laird, N., Rubin, D.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. of the Royal Statistical Society. Series B 39(1), 1–38 (1997)
Heijden, F., Robert, P.W.D., Ridder, D., Tax, D.M.J.: Classification, Parameter Estimation and State Estimation. John Wiley & Sons, Chichester (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sousa, A.V., Mendonc̨a, A.M., Sá-Miranda, M.C., Campilho, A. (2011). Classification-Based Segmentation of the Region of Interest in Chromatographic Images. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21596-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-21596-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21595-7
Online ISBN: 978-3-642-21596-4
eBook Packages: Computer ScienceComputer Science (R0)