Skip to main content

Analysing the Cognitive Effectiveness of the UCM Visual Notation

  • Conference paper
System Analysis and Modeling: About Models (SAM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6598))

Included in the following conference series:

Abstract

The Use Case Map (UCM) notation is a scenario modelling language part of ITU-T’s User Requirements Notation and intended for the elicitation, analysis, specification, and validation of requirements. Like many visual modelling languages, the concrete graphical syntax of the UCM notation has not been designed taking cognitive effectiveness formally into consideration. This paper conducts a systematic analysis of the UCM notation through an evaluation against a set of evidence-based principles for visual notation design. Several common weaknesses are identified and some improvements suggested. A broader goal of the paper is to raise the awareness of the modelling, language design, and standardization communities about the need for such evaluations and the maturity of the techniques to perform them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertin, J.: Sémiologie Graphique: Les Diagrammes - Les Réseaux - Les Cartes. Gauthier-VillarsMouton & Cie (1973)

    Google Scholar 

  2. Biederman, I.: Recognition-by-Components: A Theory of Human Image Understanding. Psychological Review 94(2), 115–147 (1987)

    Article  Google Scholar 

  3. Britton, C., Jones, S.: The Untrained Eye: How Languages for Software Specification Support Understanding by Untrained Users. Human Computer Interaction 14, 191–244 (1999)

    Article  Google Scholar 

  4. Buhr, R.J., Casselman, R.S.: Use Case Maps for Object-Oriented Systems. Prentice Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  5. Citrin, W.: Strategic Directions in Visual Languages Research. ACM Computing Surveys 24(4) (1996)

    Google Scholar 

  6. Genon, N., Amyot, D., Heymans, P., Moody, D.L.: Applying the “Physics” of Notations to (URN) Use Case Maps. Tech. Rep., PReCISE - University of Namur (2010), http://www.info.fundp.ac.be/~nge/AnalysingUCMagainstPoN.pdf

  7. Genon, N., Heymans, P., Amyot, D.: Analysing the Cognitive Effectiveness of the BPMN 2.0 Visual Notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Lohse, G.L.: The Role of Working Memory in Graphical Information Processing. Behaviour & Information Technology, 297–308 (1997)

    Google Scholar 

  9. Goodman, N.: Languages of Art: An Approach to a Theory of Symbols. Bobbs-Merrill Co., Indianapolis (1968)

    Google Scholar 

  10. Green, T., Blandford, A., Church, L., Roast, C., Clarke, S.: Cognitive Dimensions: Achievements, New Directions, and Open Questions. Journal of Visual Languages and Computing 17, 328–365 (2006)

    Article  Google Scholar 

  11. ITU-T: Recommendation Z.601 Data Architecture of One Software System. International Telecommunication Union (February 2007)

    Google Scholar 

  12. ITU-T: Recommendation Z.111 Notations to Define ITU-T Languages. International Telecommunication Union (November 2008)

    Google Scholar 

  13. ITU-T: Recommendation Z.151 User Requirements Notation (URN) Language Definition. International Telecommunication Union (November 2008)

    Google Scholar 

  14. Kim, J., Hahn, J., Hahn, H.: How Do We Understand a Systeme with (So) Many Diagrams? Cognitive Integration Processes in Diagrammatic Reasoning. Information Systems Research 11(3), 284–303 (2000)

    Article  Google Scholar 

  15. Krogstie, J., Sindre, G., Jorgensen, H.: Process Models Representing Knowledge for Action: a Revised Quality Framework. European Journal of Information Systems 15, 91–102 (2006)

    Article  Google Scholar 

  16. Krogstie, J., Solvberg, A.: Information Systems Engineering - Conceptual Modeling in a Quality Perspective, Kompendiumforlaget. Kompendiumforlaget, Trondheim, Norway (2003)

    Google Scholar 

  17. Lamping, J., Rao, R.: The Hyperbolic Browser: a Focus + Context Technique for Visualizing Large Hierarchies. Journal of Visual Languages and Computing 7, 33–55 (1999)

    Article  Google Scholar 

  18. Larkin, J., Simon, H.: Why a Diagram Is (Sometimes) Worth Ten Thousand Words. Cognitive Science 11, 65–99 (1987)

    Article  Google Scholar 

  19. Lohse, G.: A Cognitive Model for Understanding Graphical Perception. Human Computer Interaction 8(4), 353–388 (1993)

    Article  Google Scholar 

  20. Lynch, K.: The Image of the City. MIT Press, Cambridge (1960)

    Google Scholar 

  21. Masri, K., Parker, D., Gemino, A.: Using Iconic Graphics in Entity Relationship Diagrams: The Impact on Understanding. Journal of Database Management 19(3), 22–41 (2008)

    Article  Google Scholar 

  22. Mayer, R.E., Moreno, R.: Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist 38(1), 43–52 (2003)

    Article  Google Scholar 

  23. Mendling, J., Reijers, H., van der Aalst, W.: Seven Process Modelling Guidelines (7PMG). Information and Software Technology 52(2), 127–136 (2010)

    Article  Google Scholar 

  24. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. Psycological Review, 81–97 (1956)

    Google Scholar 

  25. Moody, D.L.: The “Physics” of Notations: Towards a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Transactions on Software Engineering 35, 756–779 (2009)

    Article  Google Scholar 

  26. Moody, D.L.: Theory Development in Visual Language Research: Beyond the Cognitive Dimensions of Notations. In: Proc. of the IEEE Symposium on Visual Languages and Human-Centric Computing (VLHCC 2009), pp. 151–154 (2009)

    Google Scholar 

  27. Moody, D.L., Heymans, P., Matulevičius, R.: Visual Syntax Does Matter: Improving the Cognitive Effectiveness of the i* Visual Notation. Requirements Engineering 15(2), 141–175 (2010)

    Article  Google Scholar 

  28. Moody, D.L., van Hillegersberg, J.: Evaluating the Visual Syntax of UML: An analysis of the Cognitive Effectiveness of the UML Family Of Diagrams. In: Proc. of the 1st International Conference on Software Language Engineering (2008)

    Google Scholar 

  29. Paivio, A.: Mental Representations: A Dual Coding Approach. Oxford University Press, Oxford (1986)

    Google Scholar 

  30. Petre, M.: Why Looking Isn’t Always Seeing: Readership Skills and Graphical Programming. Communications of ACM 38(6), 33–44 (1995)

    Article  Google Scholar 

  31. Popper, K.R.: Science as Falsification. In: Routledge, Keagan, P. (eds.) Conjectures and Refutations, London, pp. 30–39 (1963)

    Google Scholar 

  32. Schuette, R., Rotthowe, T.: The Guidelines of Modeling - An Approach to Enhance the Quality in Information Models. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 240–254. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  33. Shaft, T., Vessey, I.: The Role of Cognitive Fit in the Relationship between Software Comprehension and Modification. MIS Quarterly 30(1), 29–55 (2006)

    Google Scholar 

  34. Siau, K.: Informational and Computational Equivalence in Comparing Information Modelling Methods. Journal of Database Management 15(1), 73–86 (2004)

    Article  Google Scholar 

  35. Turetken, O., Schuff, D., Sharda, R., Ow, T.: Supporting Systems Analysis and Design Through Fisheye Views. Communications of ACM 47(9), 72–77 (2004)

    Article  Google Scholar 

  36. Weber, R.: Ontological Foundations Of Information Systems (Coopers And Lybrand Accounting Research Methodology Monograph No. 4). Coopers And Lybrand (1997)

    Google Scholar 

  37. White, A.W.: The Elements of Graphic Design: Space, Unity (2002)

    Google Scholar 

  38. Winn, W.: An Account of How Readers Search for Information in Diagrams. Contemporary Educational Psychology 18, 162–185 (1993)

    Article  Google Scholar 

  39. Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements Engineering. In: Proc. of the 3rd IEEE International Symposium on Requirements Engineering (RE 1997), pp. 226–235. IEEE Computer Society, USA (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Genon, N., Amyot, D., Heymans, P. (2011). Analysing the Cognitive Effectiveness of the UCM Visual Notation. In: Kraemer, F.A., Herrmann, P. (eds) System Analysis and Modeling: About Models. SAM 2010. Lecture Notes in Computer Science, vol 6598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21652-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21652-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21651-0

  • Online ISBN: 978-3-642-21652-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics