Skip to main content

Out-of-the-Box and Custom Implementation of Metaheuristics. A Case Study: The Vehicle Routing Problem with Stochastic Demand

  • Chapter
Intelligent Computational Optimization in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 366))

  • 1224 Accesses

Abstract

Metaheuristics are a class of effective algorithms for optimization problems. A basic implementation of a metaheuristic typically requires rather little development effort. With a significantly larger investment in the design, implementation, and fine-tuning, metaheuristics can often produce state-of-the-art results. According to the amount of development effort, we say that an implementation of a metaheuristic is either an out − of − the − box version or a custom one. The possibility of implementing metaheuristics in such a flexible way is one of the major strengths of these algorithms. Nonetheless, it also hides some possible catches. In particular, it should be noticed that results obtained with out − of − the − box implementations cannot be always generalized to custom ones, and vice versa. The goal of this analysis is to stress that these two ways of using metaheuristics are different. As a case study, we focus on the vehicle routing problem with stochastic demand and on five among the most successful metaheuristics—namely, tabu search, simulated annealing, genetic algorithms, iterated local search, and ant colony optimization.We show that the relative performance of these algorithms strongly varies whether one considers out − of − the − box implementations or custom ones, in which the parameters are accurately fine-tuned. Moreover, we underline the relevance of clearly stating the framework in which the results reported in the literature have been obtained. To this aim, we consider also an implementation of the same algorithms as described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13, 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  3. Barr, R.S., Kelly, J.P., Resende, M.G.C., Stewart, W.R.: Designing and reporting computational experiments with heuristic methods. Journal of Heuristics 1(1), 9–32 (1995)

    Article  MATH  Google Scholar 

  4. Birattari, M., Dorigo, M.: How to assess and report the performance of a stochastic algorithm on a benchmark problem: Mean or best result on a number of runs? Optimization Letters 1(3), 309–311 (2006)

    Article  MathSciNet  Google Scholar 

  5. Birattari, M., Zlochin, M., Dorigo, M.: Towards a theory of practice in metaheuristics design: A machine learning perspective. Theoretical Informatics and Applications 40(2), 353–369 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eiben, A.E., Jelasity, M.: A critical note on experimental research methodology in EC. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 582–587. IEEE Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  7. Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1, 33–42 (1995)

    Article  MATH  Google Scholar 

  8. Pellegrini, P., Birattari, M.: Implementation effort and performance. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2007. LNCS, vol. 4638, pp. 31–45. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing problem with stochastic demands. Journal of Mathematical Modelling and Algorithms 5(1), 91–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B., et al. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  11. Birattari, M.: The problem of tuning metaheuristics as seen from a machine learning perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium (2005)

    Google Scholar 

  12. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer, Berlin (2009)

    MATH  Google Scholar 

  13. Adenso-Díaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Operations Research 54(1), 99–114 (2006)

    Article  MATH  Google Scholar 

  14. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design to find effective parameter settings for heuristics. Journal of Heuristics 7(1), 77–97 (2001)

    Article  MATH  Google Scholar 

  15. Tillman, F.: The multiple terminal delivery problem with probabilistic demands. Transportation Science 3, 192–204 (1969)

    Article  Google Scholar 

  16. Stewart, W., Golden, B.: Stochastic vehicle routing: a comprehensive approach. European Journal of Operational Research 14, 371–385 (1983)

    Article  MATH  Google Scholar 

  17. Dror, M., Trudeau, P.: Stochastic vehicle routing with modified saving algorithm. European Journal of Operational Research 23, 228–235 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Laporte, G., Louveau, F.: Formulations and bounds for the stochastic capacitated vehicle routing problem with uncertain supplies. Technical Report G-87-23, Ecole des Hautes Etudes Commerciale, University of Montreal, Montreal, Canada (1987)

    Google Scholar 

  19. Laporte, G., Louveau, F., Mercure, H.: Models and exact solutions for a class of stochastic location-routing problems. Technical Report G-87-14, Ecole des Hautes Etudes Commerciale, University of Montreal, Montreal, Canada (1987)

    Google Scholar 

  20. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Operations Research 40(3), 574–585 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bertsimas, D.J., Simchi-Levi, D.: A new generation of vehicle routing research: robust algorithms, addressing uncertainty. Operations Research 44(3), 286–304 (1996)

    Article  MATH  Google Scholar 

  22. Yang, W.H., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with restocking. Transportation Science 34(1), 99–112 (2000)

    Article  MATH  Google Scholar 

  23. Secomandi, N.: Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands. Computers & Operations Research 27, 1201–1225 (2000)

    Article  MATH  Google Scholar 

  24. Secomandi, N.: A rollout policy for the vehicle routing problem with stochastic demands. Operations Research 49, 796–802 (2001)

    Article  MATH  Google Scholar 

  25. Secomandi, N.: Analysis of a rollout approach to sequencing problems with stochastic routing applications. Journal of Heuristics 9, 321–352 (2003)

    Article  MATH  Google Scholar 

  26. Teodorović, D., Pavković, G.: A simulated annealing technique approach to the VRP in the case of stochastic demand. Transportation Planning and Technology 16, 261–273 (1992)

    Article  Google Scholar 

  27. Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Working paper, CRT, University of Montreal, Montreal, Canada (1994)

    Google Scholar 

  28. Or, I.: Traveling Salesman-Type Combinatorial Problems and Their Relation to the Logistics of Regional Blood Banking. PhD thesis, Northwestern University, Evanston, IL, USA (1976)

    Google Scholar 

  29. Lin, S.: Computer solutions of the traveling salesman problem. Bell System Tech. Journal 44, 2245–2269 (1965)

    MATH  Google Scholar 

  30. Glover, F.: Heuristics for integer programming using surrogate constraints. Decision Sciences 8, 156–166 (1977)

    Article  Google Scholar 

  31. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)

    Book  MATH  Google Scholar 

  32. Aarts, E.H.L., Korst, J.H.M., van Laarhoven, P.J.M.: Simulated annealing. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, pp. 91–120. John Wiley & Sons, Inc., New York (1997)

    Google Scholar 

  33. Cerny, V.: A thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications 45, 41–51 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fleischer, M.: Simulated annealing: past, present and future. In: Lilegdon, W.R., Alexopoulos, C.L., Kang, K., Goldsam, G. (eds.) Proceedings of the 1995 Winter Simulation Conference, pp. 155–161 (1995)

    Google Scholar 

  35. Ingber, L.: Adaptive simulated annealing (ASA): lessons learned. Control and Cybernetics 26(1), 33–54 (1996)

    Google Scholar 

  36. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  37. Darwin, C.R.: On the Origin of Species by Means of Natural Selection. Or the preservation of favoured races in the struggle for life. John Murray, London (1859)

    Google Scholar 

  38. Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. IOP Publishing Ltd., Bristol (1997)

    Google Scholar 

  39. Fogel, L.J.: Toward inductive inference automata. In: Proceedings of the International Federation for Information Processing Congress, Munich, Germany, pp. 395–399 (1962)

    Google Scholar 

  40. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligent through Simulated Evolution. John Wiley & Sons, New York (1966)

    Google Scholar 

  41. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)

    MATH  Google Scholar 

  42. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Harbor (1975)

    Google Scholar 

  43. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

    Google Scholar 

  44. Laurenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  45. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization: Artificial ants as a computational intelligence technique. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)

    Google Scholar 

  46. Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-based search for combinatorial optimization: A critical survey. Annals of Operations Research 131(1-4), 373–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bartz-Beielstein, T., Preuss, M., Reinholz, A.: Evolutionary algorithms for optimization practitioners. Technical Report CI-151/03, Interner Bericht des Sonderforschungsbereichs 531 Computational Intelligence, Universität Dortmund, Dortmund, Germany (2003)

    Google Scholar 

  48. Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world applications: A regression tree based approach. In: Greenwood, G.W. (ed.) Proc. 2004 Congress on Evolutionary Computation (CEC 2004), pp. 1111–1118. IEEE Press, Piscataway (2004)

    Chapter  Google Scholar 

  49. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)

    MATH  Google Scholar 

  50. Favaretto, D., Moretti, E., Pellegrini, P.: On the explorative behavior of MAX–MIN ant system. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2009. LNCS, vol. 5752, pp. 115–119. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  51. Xu, J., Kelly, J.: A network flow-based tabu search heuristic for the vehicle routing problem. Transportation Science 30, 379–393 (1996)

    Article  MATH  Google Scholar 

  52. Parson, R., Johnson, M.: A case study in experimental design applied to genetic algorithms with applications to DNA sequence assembly. American Journal of Mathematical and Management Sciences 17, 369–396 (1997)

    Google Scholar 

  53. Van Breedam, A.: An analysis od the effect of local improvement operators in genetic algorithms and simulated annealing for the vehicle routing problem. Technical Report TR 96/14, Faculty of Applied Economics, University of Antwerp, Antwerp, Belgium (1996)

    Google Scholar 

  54. Xu, J., Chiu, S.Y., Glover, F.: Fine-tuning a tabu search algorithm with statistical tests. International Transactions on Operational Research 5(3), 233–244 (1998)

    Article  Google Scholar 

  55. Chiarandini, M.: Stochastic local search for overconstrained problems. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany (2005)

    Google Scholar 

  56. Chiarandini, M., Stützle, T.: Experimental evaluation of course timetabling algorithms. Technical Report AIDA-02-05, FG Intellektik, FB Informatik, Technische Universität Darmstadt, Darmstadt, Germany (2002)

    Google Scholar 

  57. den Besten, M.L.: Simple metaheuristics for scheduling. An empirical investigation into the application of iterated local search to deterministic scheduling problemns with tardiness penalities. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany (2004)

    Google Scholar 

  58. Schiavinotto, T., Stützle, T.: The linear ordering problem: instances, search space analysis and algorithms. Journal of Mathematical Modelling and Algorithms 3, 367–402 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yuan, B., Gallagher, M.: Statistical racing techniques for improved empirical evaluation of evolutionary algorithms. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tino, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 172–181. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  60. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA Journal on Computing 6, 126–585 (1994)

    MATH  Google Scholar 

  61. Laporte, G., Nobert, Y., Desrochers, M.: Optimal routing under capacity and distance restrictions. Operations Research 33, 1050–1073 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  62. Pellegrini, P., Birattari, M.: Instances generator for the vehicle routing problem with stochastic demand. Technical Report TR/IRIDIA/2005-10, Iridia, Université Libre de Bruxelles, Brussels, Belgium (2005)

    Google Scholar 

  63. Whitley, D., Starkweather, T., Shaner, D.: The traveling salesman problem and sequence scheduling: quality solutions using genetic edge recombination. In: Davis, L. (ed.) Handbook of Genetic Algorithms, pp. 350–372. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  64. Friedman, J.H.: Multivariate adaptive regression splines. The Annals of Statistics 19, 1–141 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  65. Birattari, M.: On the estimation of the expected performance of a metaheuristic on a class of instances. How many instances, how many runs? Technical Report TR/IRIDIA/2004-01, Iridia, Université Libre de Bruxelles, Brussels, Belgium (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pellegrini, P., Birattari, M. (2011). Out-of-the-Box and Custom Implementation of Metaheuristics. A Case Study: The Vehicle Routing Problem with Stochastic Demand. In: Köppen, M., Schaefer, G., Abraham, A. (eds) Intelligent Computational Optimization in Engineering. Studies in Computational Intelligence, vol 366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21705-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21705-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21704-3

  • Online ISBN: 978-3-642-21705-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics