Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 366))

  • 1185 Accesses

Abstract

Intelligent Computational Optimization has been successfully applied to several control approaches. For instance, Planning Control uses information regarding a problem and its environment to decide whether a plan is the most suitable to achieve a required control objective or not. Such algorithm is commonly embedded into a conveniently located model inside a control loop. Planning provides a general and easy methodology widely used by a number of approaches such as receding horizon control (RHC) and model predictive control (MPC). Actually, MPC is the planning approach that has recently acknowledged a wide acceptance for industrial applications despite being highly constrained by |its computational complexity. For MPC, the evaluation of the overall plan is based upon time-consuming approaches such as dynamic programming and gradient-like methods. This chapter explores the usefulness of planning in order to improve the performance of feedback-based control schemes considering one probabilistic approach known as the Learning Automata (LA). Standard gradient methods develop a plan evaluation scheme whose solution lies on a neighbourhood distance from the previous point, forcing to explore the space extensively. Remarkably, LA algorithms are based on stochastic principles considering newer points for optimization as being determined by a probability function with no constraints whatsoever on how close they lie from previous optimization points. The proposed LA approach is considered as a planning system to select the plan holding the highest probability of yielding the best closed-loop results. The system’s performance is tested through a nonlinear benchmark plant, comparing its results to the Levenberg-Marquardt (LM) algorithm and some other Genetic algorithms (GA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beygi, H., Meybodi, M.R.: A new action-set learning automa-ton for function optimization. Int. J. Franklin Inst. 343, 27–47 (2006)

    Article  Google Scholar 

  • Beigy, H., Meybodi, M.R.: A learning automata-based algorithm for determination of the number of hidden units for three-layer neural networks. International Journal of Systems Science 40(1), 101–118 (2009)

    Article  MATH  Google Scholar 

  • Bloemen, H., Van den Boom, T., Verbruggen, H.: Optimization Algorithms for Bilinear Model–Based Predictive Control Problems. American Institute of Chemical Engineers 50, 1453–1461 (2004)

    Google Scholar 

  • Camacho, E., Bordons, C.: Model Predictive Control (Advanced Textbooks in Control and Signal Processing). Springer, Berlin (2008)

    Google Scholar 

  • Camacho, E.F., Bordons, C.: Nonlinear model predictive control: An introductory review. Assessment and future directions of nonlinear model predictive control. Springer, Heidelberg (2007)

    Google Scholar 

  • Canale, M., Fagiano, L., Milanese, M.: Set Membership approximation theory for fast implementation of Model Predictive Control laws. Automatica 45, 45–54 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chauvin, J., Corde, G., Petit, N., Rouchon, P.: Motion planning for experimental airpath control of a diesel homogeneous charge-compression ignition engine. Control Engineering Practice 16(9), 1081–1091 (2008)

    Article  Google Scholar 

  • Chen, W., Li, X., Chen, M.: Suboptimal Nonlinear Model Predictive Control Based on Genetic Algorithm. In: 2009 Third International Symposium on Intelligent Information Technology Application Workshop (2009)

    Google Scholar 

  • Cueli, R., Bordons, C.: Iterative nonlinear model predictive control. Stability, robustness and applications. Control Engineering Practice 16, 1023–1034 (2008)

    Article  Google Scholar 

  • Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in con-trol systems engineering: a survey. Control Engineering Practice 10(2002), 1223–1241 (2002)

    Article  Google Scholar 

  • Gao, X.Z., Wang, X., Ovaska, S.J.: Fusion of clonal selection algorithm and differential evolution method in training cascade–correlation neural network. Neurocomputing 72, 2483–2490 (2009)

    Article  Google Scholar 

  • Garcia, C.E., Prett, D.M., Morari, M.: Model Predictive Control: Theory and Practice - A Survey. Automatica 25, 335 (1989)

    Article  MATH  Google Scholar 

  • Howell, M., Gordon, T.: Continuous action reinforcement learning automata and their application to adaptive digital filter design. Engineering Applications of Artificial Intelligence 14, 549–561 (2001)

    Article  Google Scholar 

  • Howell, M.N., Frost, G.P., Gordon, T.J., Wu, Q.H.: Continuous action reinforcement learning applied to vehicle suspension control. Mechatronics 7(3), 263–276 (1997)

    Article  Google Scholar 

  • Huang, L.: Velocity planning for a mobile robot to track a moving target—a potential field approach. Robotics and Autonomous Systems 57, 55–63 (2009)

    Article  Google Scholar 

  • Ikonen, E., Najimz, K.: Online optimization of replacement policies using learning automata. International Journal of Systems Science 39(3), 237–249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kashki, M., Lofty, Y., Abdel-Magid, Abido, M.A.: Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. In: Huang, et al. (eds.) A Reinforcement Learning Automata Optimization Approach for Optimum Tuning of PID Controller in AVR System, pp. 684–692. Springer, Berlin (2008)

    Google Scholar 

  • Kelley, C.T.: Iterative Methods for Optimization. SIAM Fron-tiers in Applied Mathematics (18) (2000); ISBN 0-89871-433-8

    Google Scholar 

  • Liu, G.P.: Nonlinear Identification and Control: A Neural Net-work Approach. Springer, Berlin (2001)

    Google Scholar 

  • Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained Model Predictive Control: Stability and Optimality. Automatica 36(6), 789 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Meybodi, M.R., Beigy, H.: A note on learning automata-based schemes for adaptation of BP parameters. Neurocomputing 48, 957–974 (2002)

    Article  MATH  Google Scholar 

  • Nagya, Z., Agachia, S., Allgowerb, F., Findeisenb, R., Diehlc, M., Bockc, H.G., Schloderc, J.P.: Using genetic algorithm in robust nonlinear model predictive control. Computer Aided Chemical Engineering 9, 711–716 (2001)

    Article  Google Scholar 

  • Nagy, Z.K., Mahn, B., Franke, R., Allgower, F.: Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor. Control Engineering Practice 15(7), 839–850 (2007)

    Article  Google Scholar 

  • Najim, K., Poznyak, A.S.: Learning Automata - Theory and Applications. Pergamon Press, Oxford (1994)

    Google Scholar 

  • Narendra, K.S., Thathachar, M.A.L.: Learning Automata: an Introduction. Prentice-Hall, London (1989)

    Google Scholar 

  • Park, H., Amari, S., Fukumizu, K.: Adaptive natural gradient learning algorithms for various stochastic models. Neural Networks 13, 755–764 (2000)

    Article  Google Scholar 

  • Potočnik, B., Mušič, G., Škrjanc, I., Zupančič, B.: Model-based Predictive Control of Hybrid Systems: A Probabilistic Neural-network Approach to Real-time Control. J. Intell. Robot Syst. 51, 45–63 (2008)

    Article  Google Scholar 

  • Press, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  • Seow, K., Sim, K.: Collaborative assignment using belief-desire-intention agent modeling and negotiation with speedup strategies. Information Sciences 178(2), 1110–1132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Seyed-Hamid, Z.: Learning automata based classifier. Pattern Recognition Letters 29, 40–48 (2008)

    Article  Google Scholar 

  • Son, C.: Comparison of intelligent control planning algorithms for robots part micro-assembly task. Engineering Applications of Artificial Intelligence 19(1), 41–52 (2006)

    Article  Google Scholar 

  • Thathachar, M.A.L., Sastry, S.: Techniques for Online Stochastic Optimization. Springer, Heidelberg (2004)

    Google Scholar 

  • Thathachar, M.A.L., Sastry, P.S.: Varieties of learning automata: An overview. IEEE Trans. Systems. Man Cybernet. Part B: Cybernet. 32, 711–722 (2002)

    Article  Google Scholar 

  • Torkestani, J.A., Meybodi, M.R.: An intelligent backbone formation algorithm for wireless ad hoc networks based on distributed learning automata. Computer Networks 54, 826–843 (2010)

    Article  MATH  Google Scholar 

  • Tsetlin, M.L.: Automaton Theory and Modeling of Biological Systems. Academic Press, New York (1973)

    Google Scholar 

  • Wu, Q.H.: Learning coordinated control of power systems using inter-connected learning automata. Int. J. Electr. Power Energy Syst. 17, 91–99 (1995)

    Article  Google Scholar 

  • Ying-Pin, C., Low, C., Shih-Yu, H.: Integrated feasible direction method and genetic algorithm for optimal planning of harmonic filters with uncertainty conditions. Expert Systems with Applications 36, 3946–3955 (2009)

    Article  Google Scholar 

  • Zeng, X., Zhou, J., Vasseur, C.: A strategy for controlling non-linear systems using a learning automaton. Automatica 36, 1517–1524 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, X., Liu, Z.: A learning automaton based algorithm for optimization of continuous complex function. Information Sciences 174, 165–175 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cuevas, E., Zaldivar, D., Perez-Cisneros, M., Rojas, R. (2011). Learning Automata in Control Planning Strategies. In: Köppen, M., Schaefer, G., Abraham, A. (eds) Intelligent Computational Optimization in Engineering. Studies in Computational Intelligence, vol 366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21705-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21705-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21704-3

  • Online ISBN: 978-3-642-21705-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics