Skip to main content

A Hypothetical Free Synaptic Energy Function and Related States of Synchrony

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

Abstract

A simple hypothetical energy function is proposed for a dynamic synaptic model. It is an approach based on the theoretical thermodynamic principles that are conceptually similar to the Hopfield ones. We show that using this approach a synapse exposes stable operating points in terms of its excitatory postsynaptic potential (EPSP) as a function of its synaptic strength. We postulate that synapses in a network operating at these stable points can drive this network to an internal state of synchronous firing. The presented analysis is related to the widely investigated temporal coherent activities (cell assemblies) over a certain range of time scales (binding-by-synchrony). The results illustrate that a synaptic dynamical model has more than one stable operating point regarding the postsynaptic energy transfer. This proposes a novel explanation of the observed synchronous activities within networks regarding the synaptic (coupling) functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  2. Eliasmith, C., Anderson, C.H.: Neural Engineering (Computational Neuroscience Series): Computational, Representation, and Dynamics in Neurobiological Systems. MIT Press, Cambridge (2002)

    Google Scholar 

  3. Stringer, S.M., Rolls, E.T., Trappenberg, T.P.: Self-organizing continuous attractor network models of hippocampal spatial view cells. Neurobiology of Learning and Memory 83(1), 79–92 (2005)

    Article  Google Scholar 

  4. Levina, A., Herrmann, J.M., Geisel, T.: Phase transitions towards criticality in a neural system with adaptive interactions. Physical Review Letters 102(11), 860–875 (2009)

    Article  Google Scholar 

  5. Sarasola, C., d’Anjou, A., Torrealdea, F.J., Graña, M.: Minimization of the energy flow in the synchronization of nonidentical chaotic systems. Phys. Rev. E 72(2), 26223 (2005)

    Article  Google Scholar 

  6. Torrealdea, F.J., d’Anjou, A., Graña, M., Sarasola, C.: Energy aspects of the synchronization of model neurons. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 74(1), 11905 (2006)

    Article  Google Scholar 

  7. Friston, K.: The free-energy principle: a rough guide to the brain? Trends in Cognitive Sciences 13(7), 293–301 (2009)

    Article  Google Scholar 

  8. El-Laithy, K., Bogdan, M.: Synchrony state generation in artificial neural networks with stochastic synapses. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5768, pp. 181–190. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. El-Laithy, K., Bogdan, M.: synchrony state generation: An approach using stochastic synapses. J. of Artificial Intelligence and Soft Computing Research 1(1), 17–26 (2011)

    Google Scholar 

  10. El-Laithy, K., Bogdan, M.: Predicting spike-timing of a thalamic neuron using a stochastic synaptic model. In: ESANN Proceedings, pp. 357–362 (2010)

    Google Scholar 

  11. El-Laithy, K., Bogdan, M.: A hebbian-based reinforcement learning framework for spike-timing-dependent synapses. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6353, pp. 160–169. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. von der Malsburg, C.: The what and why of binding: The modeler’s perspective (September 1999)

    Google Scholar 

  13. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations. Neuron 24, 49–65 (1999)

    Article  Google Scholar 

  14. Singer, W.: Understanding the brain. European Molecular Biology Org. 8, 16–19 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El-Laithy, K., Bogdan, M. (2011). A Hypothetical Free Synaptic Energy Function and Related States of Synchrony. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics