Abstract
Liquid-state machines (LSM) represent a class of neural networks that are able to introduce multitasking by implicit representation of input information over the entire network components. How exactly the input information can be represented and how the computations are accomplished, stay however unresolved. In order to tackle this issue, we demonstrate how LSM can process different input information as a varying set of transiently stable states of collective activity. This is performed by adopting a relatively complex dynamic synaptic model. Some light is shed on the relevance of the usage of the developed framework to mimic complex cortical functions, e.g. content-addressable memory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Velde, F.: Is the brain an effective Turing machine or a finite-state machine?. Journal Psychological Research 55(1), 71–79 (1993)
van der Velde, F., de Kamps, M.: Neural blackboard architectures of combinatorial structures in cognition. Behavioral and Brain Sciences 29(01), 37–70 (2006)
Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)
Maass, W., Markram, H.: On the computational power of circuits of spiking neurons. J. Comput. Syst. Sci. 69(4), 593–616 (2004)
Maass, W.: Liquid computing. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 507–516. Springer, Heidelberg (2007)
von der Malsburg, C.: The what and why of binding: The modeler’s perspective (September 1999)
Singer, W.: Neuronal synchrony: a versatile code for the definition of relations. Neuron 24, 49–65 (1999)
Sejnowski, T.J., Paulsen, O.: Network Oscillations: Emerging Computational Principles. J. Neurosci. 26(6), 1673–1676 (2006)
Singer, W.: Understanding the brain. European Molecular Biology Org. 8, 16–19 (2007)
Tsodyks, M., Uziel, A., Markram, H.: Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci. 20, 50 (2000)
Gilbert, C.D., Sigman, M.: Brain states: top-down influences in sensory processing. Neuron 54(5), 677–696 (2007)
Ford, J.M., Krystal, J.H., Mathalon, D.H.: Neural Synchrony in Schizophrenia: From Networks to New Treatments. Schizophr Bull. 33(4), 848–852 (2007)
Bhattacharya, J., Petsche, H.: Shadows of artistry: cortical synchrony during perception and imagery of visual art. Cognitive Brain Research 13(2), 179–186 (2002)
Cheadle, S., Bauer, F., Parton, A., Müller, H., Bonneh, Y.S., Usher, M.: Spatial structure affects temporal judgments: Evidence for a synchrony binding code. Journal of Vision 8(7), 1–12 (2008)
Wennekers, T., Ay, N.: Spatial and temporal stochastic interaction in neuronal assemblies. Journal Theory in Biosciences 122(1), 5–18 (2003)
El-Laithy, K., Bogdan, M.: synchrony state generation: An approach using stochastic synapses. J. of Artificial Intelligence and Soft Computing Research 1(1), 17–26 (2011)
Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. Proc. of the Nat. Academy of Sciences of the USA 95(9), 5323–5328 (1998)
El-Laithy, K., Bogdan, M.: Synchrony state generation in artificial neural networks with stochastic synapses. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5768, pp. 181–190. Springer, Heidelberg (2009)
Brunel, N., Rossum, M.v.: Quantitative investigations of electrical nerve excitation treated as polarization: Louis lapicque 1907; Translated Biol. Cybern. 97(5), 341–349 (2007)
El-Laithy, K., Bogdan, M.: Predicting spike-timing of a thalamic neuron using a stochastic synaptic model. In: ESANN Proceedings, pp. 357–362 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
El-Laithy, K., Bogdan, M. (2011). On the Capacity of Transient Internal States in Liquid-State Machines. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-21738-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21737-1
Online ISBN: 978-3-642-21738-8
eBook Packages: Computer ScienceComputer Science (R0)