Skip to main content

DTP: Decision Tree-Based Predictor of Protein Contact Map

  • Conference paper
Modern Approaches in Applied Intelligence (IEA/AIE 2011)

Abstract

In this paper, we focus on protein contact map prediction, one of the most important intermediate steps of the protein folding problem. We describe a method where contact maps of proteins are predicted with decision trees, using as input codings the information obtained from all possible pairs of amino acids that were formed in the training data set. As a result, the algorithm creates a model that consists of 400 decision trees (one for each possible amino acids pair), which takes into account the amino acids frequency in the subsequence existent between the couple of amino acids analyzed. In order to evaluate the method generalization capabilities, we carry out an experiment using 173 non-homologous proteins of known structures, selected from the protein databank (PBD). Our results indicate that the method can assign protein contacts with an average accuracy of 0.34, superior to the 0.25 obtained by the FNETCSS method. This shows that our algorithm improves the accuracy with respect to the methods compared, especially with the increase of protein length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ouzounis, C.A., Valencia, A.: Early bioinformatics: the birth of a discipline a personal view. Bioinformatics 19(17), 2176–2190 (2003)

    Article  Google Scholar 

  2. Cohen, J.: Bioinformatics An Introduction for Computer Scientists. Computing 36(2), 122–158 (2004)

    Google Scholar 

  3. Deng, M.: Mapping gene ontology to proteins based on protein-protein interaction data.. Bioinformatics 20, 895–902 (2004)

    Article  Google Scholar 

  4. Bork, P.: Protein interaction network from yeast to human. Curr. Opin. Struct. Biol 14, 292–299 (2004)

    Article  Google Scholar 

  5. Robson, B.B.: Analysis of the Code Relating Sequence to Conformation in Globular Proteins. Biochem. J. 141(3), 853–867 (1974)

    Article  Google Scholar 

  6. Ramanathan, A.: Using Tensor Analysis to characterize Contact-map Dynamics of Proteins. PhD thesis, Carnegie Mellon University Pittsburgh, PA (2008)

    Google Scholar 

  7. Fariselli, P., Casadio, R.: A neural network based predictor of residue contacts in proteins. Protein Engineering 12(1), 15–21 (1999)

    Article  Google Scholar 

  8. Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Prediction of contact maps with neural networks and correlated mutations. Protein Engineering 14(11), 835–843 (2001)

    Article  Google Scholar 

  9. Bohr, H.: Protein secondary structure and homology by neural networks. FEBS Letters 241(1), 223–228 (1988)

    Article  Google Scholar 

  10. Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.J., Fredholm, H., Lautrupt, B., Petersen, S.B.: A novel approach to prediction of the 3-dimensional structures of protein backbones by neural networks. FEBS Letters 261(1), 43–46 (1990)

    Article  Google Scholar 

  11. Pollastri, G., Baldi, P.: Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners. Bioinformatics 18, 1–9 (2002)

    Article  Google Scholar 

  12. Kim, H.: Computational analysis of hydrogen bonds in protein-RNA complexes for interaction patterns.. FEBS Letters 552, 231–239 (2003)

    Article  Google Scholar 

  13. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  15. Nakamura, H., Berman, H.M., Henrick, K.: Announcing the worldwide Protein Data Bank. Nature Structural Biology 10(12), 98 (2003)

    Google Scholar 

  16. Thomas, C., Casari, D.J., Sander, G.: The prediction of protein contacts from multiple sequence alignments. Protein Engng. 9, 941–948 (1996)

    Article  Google Scholar 

  17. Pazos, F., Helmer-citterich, M., Ausiello, G., Valencia, A.: Correlated Mutations Contain Information About Protein - protein Interaction. Dipartimento Biologia, U Roma, and Tor Vergata, pp. 511–523 (1997)

    Google Scholar 

  18. Aguilar-Ruiz, J.S.Y., Anguiano-Rey, E., Márquez-Chamorro, A.E.: Marco de Referencia en la Calidad de la Predicción de Mapas de Contacto de Proteínas. In: XIII Conferencia de la Asociación Española para la Inteligencia Artificial (2009)

    Google Scholar 

  19. Santiesteban_Toca, C.: Predicción de mapas de contacto basado en distancias. Trabajo de diploma de estudios avanzados. Doctorado Iberoamricano de Soft Computing (2010)

    Google Scholar 

  20. Aguilar-Ruiz, J.S.Y., Anguiano-Rey, E., Márquez-Chamorro, A.E.: Definición de Umbral Mínimo para la Predicción de Estructura Secundaria de Proteínas. In: ESTYLF. XV Congreso Español Sobre Tecnologías y Lógica Fuzzy (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santiesteban-Toca, C.E., Aguilar-Ruiz, J.S. (2011). DTP: Decision Tree-Based Predictor of Protein Contact Map. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds) Modern Approaches in Applied Intelligence. IEA/AIE 2011. Lecture Notes in Computer Science(), vol 6704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21827-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21827-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21826-2

  • Online ISBN: 978-3-642-21827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics