Skip to main content

A Prototype System for Rule Generation in Lipski’s Incomplete Information Databases

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2011)

Abstract

This paper advances rule generation in Lipski’s incomplete information databases, and develops a software tool for rule generation. We focus on three kinds of information incompleteness. The first is non-deterministic information, the second is missing values, and the third is intervals. For intervals, we introduce the concept of a resolution. Three kinds of information incompleteness are uniformly handled by NIS-Apriori algorithm. An overview of a prototype system in Prolog is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of VLDB, pp. 487–499 (1994)

    Google Scholar 

  2. Dembczyński, K., Greco, S., Słowiński, R.: Rough Set Approach to Multiple Criteria Classification with Imprecise Evaluations and Assignments. European J. Operational Research 198, 626–636 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grzymała-Busse, J.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. Transactions on Rough Sets 1, 78–95 (2004)

    MATH  Google Scholar 

  4. Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sciences 113, 271–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lipski, W.: On Semantic Issues Connected with Incomplete Information Data Base. ACM Trans. DBS. 4, 269–296 (1979)

    Google Scholar 

  6. Lipski, W.: On Databases with Incomplete Information. Journal of the ACM 28, 41–70 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Orłowska, E., Pawlak, Z.: Representation of Nondeterministic Information. Theoretical Computer Science 29, 27–39 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pawlak, Z.: Rough Sets. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  9. Sakai, H., Okuma, A.: Basic Algorithms and Tools for Rough Non-deterministic Information Analysis. Transactions on Rough Sets 1, 209–231 (2004)

    MATH  Google Scholar 

  10. Sakai, H., Ishibashi, R., Nakata, M.: On Rules and Apriori Algorithm in Non-deterministic Information Systems. Transactions on Rough Sets 9, 328–350 (2008)

    MATH  Google Scholar 

  11. Sakai, H., Nakata, M., Ślęzak, D.: Rule Generation in Lipski’s Incomplete Information Databases. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 376–385. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Systems. In: Intelligent Decision Support - Handbook of Advances and Applications of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  13. Zadeh, L.A.: Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems 90, 111–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakai, H., Nakata, M., Ślęzak, D. (2011). A Prototype System for Rule Generation in Lipski’s Incomplete Information Databases. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21881-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21880-4

  • Online ISBN: 978-3-642-21881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics