Abstract
This paper advances rule generation in Lipski’s incomplete information databases, and develops a software tool for rule generation. We focus on three kinds of information incompleteness. The first is non-deterministic information, the second is missing values, and the third is intervals. For intervals, we introduce the concept of a resolution. Three kinds of information incompleteness are uniformly handled by NIS-Apriori algorithm. An overview of a prototype system in Prolog is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of VLDB, pp. 487–499 (1994)
Dembczyński, K., Greco, S., Słowiński, R.: Rough Set Approach to Multiple Criteria Classification with Imprecise Evaluations and Assignments. European J. Operational Research 198, 626–636 (2009)
Grzymała-Busse, J.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. Transactions on Rough Sets 1, 78–95 (2004)
Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sciences 113, 271–292 (1999)
Lipski, W.: On Semantic Issues Connected with Incomplete Information Data Base. ACM Trans. DBS. 4, 269–296 (1979)
Lipski, W.: On Databases with Incomplete Information. Journal of the ACM 28, 41–70 (1981)
Orłowska, E., Pawlak, Z.: Representation of Nondeterministic Information. Theoretical Computer Science 29, 27–39 (1984)
Pawlak, Z.: Rough Sets. Kluwer Academic Publishers, Dordrecht (1991)
Sakai, H., Okuma, A.: Basic Algorithms and Tools for Rough Non-deterministic Information Analysis. Transactions on Rough Sets 1, 209–231 (2004)
Sakai, H., Ishibashi, R., Nakata, M.: On Rules and Apriori Algorithm in Non-deterministic Information Systems. Transactions on Rough Sets 9, 328–350 (2008)
Sakai, H., Nakata, M., Ślęzak, D.: Rule Generation in Lipski’s Incomplete Information Databases. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 376–385. Springer, Heidelberg (2010)
Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Systems. In: Intelligent Decision Support - Handbook of Advances and Applications of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)
Zadeh, L.A.: Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems 90, 111–127 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sakai, H., Nakata, M., Ślęzak, D. (2011). A Prototype System for Rule Generation in Lipski’s Incomplete Information Databases. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-21881-1_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21880-4
Online ISBN: 978-3-642-21881-1
eBook Packages: Computer ScienceComputer Science (R0)