Abstract
Concept lattices are mathematical structures useful for many tasks in knowledge discovery and management. A concept lattice is basically obtained from binary data encoding the membership of some attributes to some objects. Dealing with complex data brings the important problem of discretization and the associated loss of information. To avoid discretization, (i) pattern structures and (ii) symbolic data analysis provide means to analyze such complex data directly. We compare both these approaches and show how they are mutually beneficial.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bock, H.H., Diday, E. (eds.): Analysis of Symbolic Data – Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Heidelberg (2000)
Brito, P.: Hierarchical and Pyramidal Clustering with Complete Symbolic Objects. In: Bock, H.H., Diday, E. (eds.) [1], pp. 312–324
Brito, P., Polaillon, G.: Structuring probabilistic data by Galois lattices. Mathématiques et sciences humaines 169 (2005)
Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)
Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)
Kaytoue, M., Assaghir, Z., Messai, N., Napoli, A.: Two complementary classification methods for designing a concept lattice from interval data. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 345–362. Springer, Heidelberg (2010)
Kaytoue, M., Assaghir, Z., Napoli, A., Kuznetsov, S.O.: Embedding tolerance relations in formal concept analysis: an application in information fusion. In: Huang, J., Koudas, N., Jones, G., Wu, X., Collins-Thompson, K., An, A. (eds.) CIKM, pp. 1689–1692. ACM, New York (2010)
Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Information Science (2010) (in press)
Kuznetsov, S.O.: Pattern structures for analyzing complex data. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 33–44. Springer, Heidelberg (2009)
Polaillon, G.: Pyramidal Classification for Interval Data using Galois Lattice Redutcion. In: Bock, H.H., Diday, E. (eds.) [1], pp. 324–341
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Agarwal, P., Kaytoue, M., Kuznetsov, S.O., Napoli, A., Polaillon, G. (2011). Symbolic Galois Lattices with Pattern Structures. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-21881-1_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21880-4
Online ISBN: 978-3-642-21881-1
eBook Packages: Computer ScienceComputer Science (R0)