Abstract
A method of possible equivalence classes has been developed under information tables with missing values. To deal with imprecision of rough approximations that comes from missing values, the concepts of certainty and possibility are used. When an information table contains missing values, two rough approximations, certain and possible ones, are obtained. The actual rough approximation lies between the certain and possible rough approximations. The method gives the same results as a method of possible worlds. This justifies the method of possible equivalence classes. Furthermore, the method is free from the restriction that missing values may occur to only some specified attributes. Hence, we can use the method of possible equivalence classes to obtain rough approximations between arbitrary sets of attributes having missing values.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Publishing Company, Reading (1995)
Bosc, P., Duval, L., Pivert, O.: An Initial Approach to the Evaluation of Possibilistic Queries Addressed to Possibilistic Databases. Fuzzy Sets and Systems 140, 151–166 (2003)
Grahne, G.: The Problem of Incomplete Information in Relational Databases. LNCS, vol. 554. Springer, Heidelberg (1991)
Greco, S., Matarazzo, B., Słowiński, R.: Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)
Grzymala-Busse, J.W.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. Transactions on Rough Sets I, 78–95 (2004)
Guan, Y.-Y., Wang, H.-K.: Set-valued Information Systems. Information Sciences 176, 2507–2525 (2006)
Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. Journal of the ACM 31, 761–791 (1984)
Kryszkiewicz, W.: Rules in Incomplete Information Systems. Information Sciences 113, 271–292 (1999)
Lipski, W.: On Semantics Issues Connected with Incomplete Information Databases. ACM Transactions on Database Systems 4, 262–296 (1979)
Lipski, W.: On Databases with Incomplete Information. Journal of the ACM 28, 41–70 (1981)
Leung, Y., Li, D.: Maximum Consistent Techniques for Rule Acquisition in Incomplete Information Systems. Information Sciences 153, 85–106 (2003)
Nakata, M., Sakai, H.: Checking Whether or Not Rough-Set-Based Methods to Incomplete Data Satisfy a Correctness Criterion. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 227–239. Springer, Heidelberg (2005)
Nakata, M., Sakai, H.: Rough Sets Handling Missing Values Probabilistically Interpreted. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 325–334. Springer, Heidelberg (2005)
Nakata, M., Sakai, H.: Lower and Upper Approximations in Data Tables Containing Possibilistic Information. Transactions on Rough Sets VII, 170–189 (2007)
Nakata, M., Sakai, H.: Applying Rough Sets to Information Tables Containing Probabilistic Values. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 282–294. Springer, Heidelberg (2007)
Nakata, M., Sakai, H.: Rough Sets Approximations in Data Tables Containing Missing Values. In: Proceedings of FUZZ-IEEE 2008, pp. 673–680. IEEE Press, New York (2008)
Orlowska, E., Pawlak, Z.: Representation of Nondeterministic Information. Theoretical Computer Science 29, 313–324 (1984)
Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the Relational Database Model. Springer, Heidelberg (1989)
Parsons, S.: Current Approaches to Handling Imperfect Information in Data and Knowledge Bases. IEEE Transactions on Knowledge and Data Engineering 8, 353–372 (1996)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Sakai, H.: Effective Procedures for Handling Possible Equivalence Relation in Non-deterministic Information Systems. Fundamenta Informaticae 48, 343–362 (2001)
Sakai, H., Nakata, M.: An Application of Discernibility Functions to Generating Minimal Rules in Non-deterministic Information Systems. Journal of Advanced Computational Intelligence and Intelligent Informatics 10, 695–702 (2006)
Sakai, H., Okuma, A.: Basic Algorithms and Tools for Rough Non-deterministic Information Systems. Transactions on Rough Sets I, 209–231 (2004)
Slowiński, R., Stefanowski, J.: Rough Classification in Incomplete Information Systems. Mathematical and Computer Modelling 12, 1347–1357 (1989)
Stefanowski, J., Tsoukià s, A.: Incomplete Information Tables and Rough Classification. Computational Intelligence 17, 545–566 (2001)
Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.): RSCTC 2010. LNCS, vol. 6086. Springer, Heidelberg (2010)
Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.): RSKT 2010. LNCS, vol. 6401. Springer, Heidelberg (2010)
Zimányi, E., Pirotte, A.: Imperfect Information in Relational Databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 35–87. Kluwer Academic Publishers, Boston (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nakata, M., Sakai, H. (2011). Dual Rough Approximations in Information Tables with Missing Values. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-21881-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21880-4
Online ISBN: 978-3-642-21881-1
eBook Packages: Computer ScienceComputer Science (R0)