Skip to main content

Dual Rough Approximations in Information Tables with Missing Values

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6743))

  • 1139 Accesses

Abstract

A method of possible equivalence classes has been developed under information tables with missing values. To deal with imprecision of rough approximations that comes from missing values, the concepts of certainty and possibility are used. When an information table contains missing values, two rough approximations, certain and possible ones, are obtained. The actual rough approximation lies between the certain and possible rough approximations. The method gives the same results as a method of possible worlds. This justifies the method of possible equivalence classes. Furthermore, the method is free from the restriction that missing values may occur to only some specified attributes. Hence, we can use the method of possible equivalence classes to obtain rough approximations between arbitrary sets of attributes having missing values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Publishing Company, Reading (1995)

    MATH  Google Scholar 

  2. Bosc, P., Duval, L., Pivert, O.: An Initial Approach to the Evaluation of Possibilistic Queries Addressed to Possibilistic Databases. Fuzzy Sets and Systems 140, 151–166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grahne, G.: The Problem of Incomplete Information in Relational Databases. LNCS, vol. 554. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  4. Greco, S., Matarazzo, B., SÅ‚owiÅ„ski, R.: Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Grzymala-Busse, J.W.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. Transactions on Rough Sets I, 78–95 (2004)

    MATH  Google Scholar 

  6. Guan, Y.-Y., Wang, H.-K.: Set-valued Information Systems. Information Sciences 176, 2507–2525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. Journal of the ACM 31, 761–791 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kryszkiewicz, W.: Rules in Incomplete Information Systems. Information Sciences 113, 271–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lipski, W.: On Semantics Issues Connected with Incomplete Information Databases. ACM Transactions on Database Systems 4, 262–296 (1979)

    Article  Google Scholar 

  10. Lipski, W.: On Databases with Incomplete Information. Journal of the ACM 28, 41–70 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leung, Y., Li, D.: Maximum Consistent Techniques for Rule Acquisition in Incomplete Information Systems. Information Sciences 153, 85–106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nakata, M., Sakai, H.: Checking Whether or Not Rough-Set-Based Methods to Incomplete Data Satisfy a Correctness Criterion. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 227–239. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Nakata, M., Sakai, H.: Rough Sets Handling Missing Values Probabilistically Interpreted. In: ÅšlÄ™zak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 325–334. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Nakata, M., Sakai, H.: Lower and Upper Approximations in Data Tables Containing Possibilistic Information. Transactions on Rough Sets VII, 170–189 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Nakata, M., Sakai, H.: Applying Rough Sets to Information Tables Containing Probabilistic Values. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 282–294. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Nakata, M., Sakai, H.: Rough Sets Approximations in Data Tables Containing Missing Values. In: Proceedings of FUZZ-IEEE 2008, pp. 673–680. IEEE Press, New York (2008)

    Google Scholar 

  17. Orlowska, E., Pawlak, Z.: Representation of Nondeterministic Information. Theoretical Computer Science 29, 313–324 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the Relational Database Model. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  19. Parsons, S.: Current Approaches to Handling Imperfect Information in Data and Knowledge Bases. IEEE Transactions on Knowledge and Data Engineering 8, 353–372 (1996)

    Article  Google Scholar 

  20. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  21. Sakai, H.: Effective Procedures for Handling Possible Equivalence Relation in Non-deterministic Information Systems. Fundamenta Informaticae 48, 343–362 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Sakai, H., Nakata, M.: An Application of Discernibility Functions to Generating Minimal Rules in Non-deterministic Information Systems. Journal of Advanced Computational Intelligence and Intelligent Informatics 10, 695–702 (2006)

    Article  Google Scholar 

  23. Sakai, H., Okuma, A.: Basic Algorithms and Tools for Rough Non-deterministic Information Systems. Transactions on Rough Sets I, 209–231 (2004)

    MATH  Google Scholar 

  24. SlowiÅ„ski, R., Stefanowski, J.: Rough Classification in Incomplete Information Systems. Mathematical and Computer Modelling 12, 1347–1357 (1989)

    Article  Google Scholar 

  25. Stefanowski, J., Tsoukiàs, A.: Incomplete Information Tables and Rough Classification. Computational Intelligence 17, 545–566 (2001)

    Article  MATH  Google Scholar 

  26. Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.): RSCTC 2010. LNCS, vol. 6086. Springer, Heidelberg (2010)

    Google Scholar 

  27. Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.): RSKT 2010. LNCS, vol. 6401. Springer, Heidelberg (2010)

    Google Scholar 

  28. Zimányi, E., Pirotte, A.: Imperfect Information in Relational Databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 35–87. Kluwer Academic Publishers, Boston (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakata, M., Sakai, H. (2011). Dual Rough Approximations in Information Tables with Missing Values. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21881-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21880-4

  • Online ISBN: 978-3-642-21881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics