Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6783))

Included in the following conference series:

Abstract

In last decades a key problem in adopting technologies in planning process was a chronic lack of data. But in recent times, such problem was inverted due to the overabundance of data produced in different periods, with various purposes, at multiple scales and with different cognitive models. This situation generated three types of barriers to data interoperability: bureaucratic, technological, semantic. While the first two issues have been solved taking various initiatives, the last one could be solved using ontologies. Concepts are the cornerstone of the ontology, but it is not easy to define a concept without any ambiguity, discordance or vagueness. A concept can be clear or not; ambiguity occurs when a concept is not much clear; while discordance arises when an agreement is missing. If the concept definition can present some incoherence, the broad boundaries model can be useful in Ontology representation. This model is an extension of the 9-intersection model used for the topological relationship among geographical objects. The model with broad boundaries deals with uncertainty in spatial data taking into account ill defined aspects. This model is based on the definitions of inner and broad boundaries. Using this model in Ontology field, the inner boundary is the edge of the part of a concept without doubts and the broad boundary is the grey zone, with a certain level of uncertainty, useful to represent ambiguity, discordance and vagueness. Topology rules represent the relationship among concepts. If two concepts are identical, the “equal” rule can be used; if they share some parts, the “overlap” rule is suitable. If two concepts are completely different, the “disjoint” rule can be applied. If a concept is a subset of another, there are several rules which can help us (“covers”, “covered by”, “contains” and “inside”). In case all concepts are clear, these relationships can be modelled using the 9-intersection model. The way to define the part of concept included inside the inner boundary and the other one included in the broad boundary can be achieved using rough set theory. All the aspects of a concept classified in the same way represent the indiscernible part of the concept and are included inside lower approximation (inner boundary). The remaining part represents an uncertainty zone and it falls within the upper approximation (outer boundary). The measure of the degree of uncertainty inside the upper approximation can be modelled using fuzzy set theory. This approach has been tested with several concepts particularly suitable to verify the hypothesis. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laurini, R., Murgante, B.: Interoperabilità semantica e geometrica nelle basi di dati geografiche nella pianificazione urbana. In: Murgante, B. (ed.) L’informazione geografica a supporto della pianificazione territoriale, FrancoAngeli, Milano (2008)

    Google Scholar 

  2. Goodchild, M.F.: Citizens as Voluntary Sensors: Spatial Data Infrastructure in the World of Web 2.0. International Journal of Spatial Data Infrastructures Research 2, 24–32 (2007)

    Google Scholar 

  3. Goodchild, M.F.: NeoGeography and the nature of geographic expertise. Journal of Location Based Services 3, 82–96 (2009)

    Article  Google Scholar 

  4. Turner, A.: Introduction to Neogeography. O’Reilly Media, Sebastopol (2006)

    Google Scholar 

  5. Couclelis, H.: Ontologies of geographic information. International Journal of Geographical Information Science 24(12), 1785–1809 (2010)

    Article  Google Scholar 

  6. Ferraris, M.: Dove sei? Ontologia del telefonino, Bompiani editore, Milano (2005)

    Google Scholar 

  7. Neches, R., Fikes, R.E., Finin, T., Gruber, T.R., Senator, T., Swartout, W.R.: Enabling technology for knowledge sharing. AI Magazine 12 (1991)

    Google Scholar 

  8. Murgante, B.: L’informatica, i Sistemi Informativi Geografici e la Pianificazione del Territorio. In: Murgante, B. (a cura di) L’informazione geografica a supporto della pianificazione territoriale, FrancoAngeli, Milano (2008)

    Google Scholar 

  9. Chandrasekaran, B., Johnson, T.R., Benjamins, V.R.: Ontologies: what are they? why do we need them? IEEE Intelligent Systems and Their Applications 14(1) (1999)

    Google Scholar 

  10. Fonseca, F., Egenhofer, M., Davis, C., Câmara, G.: Semantic Granularity in Ontology-Driven Geographic Information Systems. Annals of Mathematics and Artificial Intelligence 36 (2002)

    Google Scholar 

  11. Murgante, B., Scardaccione, G., Las Casas, G.: Building ontologies for disaster management: seismic risk domain. In: Krek, A., Rumor, M., Zlatanova, S., Fendel, E.M. (eds.) Urban and Regional Data Management, pp. 259–269. CRC Press, Taylor & Francis, London (2009)

    Google Scholar 

  12. Las Casas, G., Murgante, B.: Il Documento preliminare al Piano strutturale della Provincia di Potenza: i termini di un approccio strategico Archivio di studi urbani e regionali, A. XXXVII, N. 85-86, pp. 199–211, edizioni FrancoAngeli, Milano (2006)

    Google Scholar 

  13. Indovina, F., Fregolent, L.: Un futuro amico. Sostenibilità ed equità, FrancoAngeli, Milano (2002)

    Google Scholar 

  14. Murgante, B., Tilio, L., Lanza, V., Scorza, F.: Using participative GIS and e-tools for involving citizens of Marmo Platano – Melandro area in European programming activities” special issue on “E-Participation in Southern Europe and the Balkans”. Journal of Balkans and Near Eastern Studies 13(1), 97–115 (2011), doi:10.1080/19448953.2011.550809

    Article  Google Scholar 

  15. Healey, P.: Planning through debate: the communicative turn in planning theory. Town Planning Review 63, 142–162 (1992)

    Article  Google Scholar 

  16. Krek, A.: Rational Ignorance of the Citizens in Public Participatory Planning. In: Proceedings of the CORP 2005 & Geomultimedia Conference, Vienna (April 2005)

    Google Scholar 

  17. Noveck, B.S.: Wiki Government: How Technology Can Make Government Better, Democracy Stronger, and Citizens More Powerful. Brookings Institution Press, Washington (2009)

    Google Scholar 

  18. Salvini, A.: L’Analisi delle Reti Sociali. Risorse e Meccanismi. Edizioni PLUS Pisa University Press (2005)

    Google Scholar 

  19. Vander Wal T.: Folksonomy Coinage and Definition (2006), http://vanderwal.net/folksonomy.html (last access 12/12/09)

  20. Kitsuregawa, M., Matsuoka, S., Matsuyama, T., Sudoh, O., Adachi, J.: Cyber Infrastructure for the Information-Explosion Era. Journal of Japanese Society for Artificial Intelligence 22(2), 209–214 (2007)

    Google Scholar 

  21. Greenfeld, A., Shepard, M.: Urban Computing and Its Discontents, The Architectural League of New York (2007)

    Google Scholar 

  22. Couclelis, H.: Ontologies of geographic information. International Journal of Geographical Information Science 24(12), 1785–1809 (2010)

    Article  Google Scholar 

  23. Pawlak, Z.: Rough Sets. International Journal of Information & Computer Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zadeh, L.: Fuzzy sets. Information Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  25. Egenhofer, M.J., Herring, J.: Categorizing binary topological relationships be-tween regions, lines, and points in geographic databases. Technical Report, Department of Surveying Engineering, University of Maine, Orono (1991)

    Google Scholar 

  26. Clementini, E., Di Felice, P.: A spatial model for complex objects with a broad boundary supporting queries on uncertain data. Data & Knowledge Engineering 37(3), 285–305 (2001)

    Article  MATH  Google Scholar 

  27. Di Donato, P., Berardi, L., Salvemini, M., Vico, F., Murgante, B.: Plan4all: European Network of Best Practices for Interoperability of Spatial Planning Information. In: Las Casas, G., Pontrandolfi, P., Murgante, B. (eds.) Informatica e Pianificazione Urbana e Territoriale, Libria Melfi (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murgante, B., Scorza, F. (2011). Ontology and Spatial Planning. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21887-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21887-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21886-6

  • Online ISBN: 978-3-642-21887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics