Abstract
Sparse matrix vector multiplication is one of the most often used functions in scientific and engineering computing. Though, various storage schemes for sparse matrices have been proposed, the optimal storage scheme is dependent upon the matrix being stored. In this paper, we will propose an auto-selecting algorithm for sparse matrix vector multiplication on GPUs that automatically selects the optimal storage scheme. We evaluated our algorithm using a solver for systems of linear equations. As a result, we found that our algorithm was effective for many sparse matrices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation (2008)
Blelloch, G.E., Heroux, M.A., Zagha, M.: Segmented Operations for Sparse Matrix Computation on Vector Multiprocessors. Tech. rep., Tech. Rep. CMU-CS-93-173, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA (1993)
Cevahir, A., Nukada, A., Matsuoka, S.: High performance conjugate gradient solver on multi-gpu clusters using hypergraph partitioning. Computer Science - Research and Development 25, 83–91 (2010), http://dx.doi.org/10.1007/s00450-010-0112-6
Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. (to appear)
Kajiyama, T., Nukada, A., Hasegawa, H., Suda, R., Nishida, A.: SILC: A Flexible and Environment-Independent Interface for Matrix Computation Libraries. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 928–935. Springer, Heidelberg (2006)
NVIDIA: CUSPARSE User Guide, http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
NVIDIA: NVIDIA GPU Computing Developer Home Page, http://developer.nvidia.com/object/gpucomputing.html
Saad, Y.: SPARSKIT: a basic tool kit for sparse matrix computations - Version 2 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kubota, Y., Takahashi, D. (2011). Optimization of Sparse Matrix-Vector Multiplication by Auto Selecting Storage Schemes on GPU. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21887-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-21887-3_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21886-6
Online ISBN: 978-3-642-21887-3
eBook Packages: Computer ScienceComputer Science (R0)