Skip to main content

Incorporating Neighborhood Effects in Customer Relationship Management Models

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6804))

Included in the following conference series:

  • 3775 Accesses

Abstract

Traditional customer relationship management (CRM) models often ignore the correlation that could exist in the purchase behavior of neighboring customers. Instead of treating this correlation as nuisance in the error term, a generalized linear autologistic regression can be used to take these neighborhood effects into account and improve the predictive performance of a customer identification model for a Japanese automobile brand. In addition, this study shows that the level on which neighborhoods are composed has an important influence on the extra value that results from the incorporation of spatial autocorrelation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baecke, P., Van den Poel, D.: Improving Purchasing Behavior Predictions by Data Augmentation with Situational Variables. Int. J. Inf. Technol. Decis. Mak. 9, 853–872 (2010)

    Article  MATH  Google Scholar 

  2. Bradlow, E.T., Bronnenberg, B., Russell, G.J., Arora, N., Bell, D.R., Duvvuri, S.D., TerHofstede, F., Sismeiro, C., Thomadsen, R., Yang, S.: Spatial Models in Marketing. Mark. Lett. 16, 267–278 (2005)

    Article  Google Scholar 

  3. Bronnenberg, B.J.: Spatial models in marketing research and practice. Appl. Stoch. Models. Bus. Ind. 21, 335–343 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bronnenberg, B.J., Mahajan, V.: Unobserved Retailer Behavior in Multimarket Data: Joint Spatial Dependence in Market Shares and Promotional Variables. Mark. Sci. 20, 284–299 (2001)

    Article  Google Scholar 

  5. Bell, D.R., Song, S.: Neighborhood effects and trail on the Internet: Evidence from online grocery retailing. QME-Quant. Mark. Econ. 5, 361–400 (2007)

    Article  Google Scholar 

  6. Moon, S., Russel, G.J.: Predicting Product Purchase from Inferred Customer Similarity: An Autologistic Model Approach. Mark. Sci. 54, 71–82 (2008)

    Google Scholar 

  7. Grinblatt, M., Keloharju, M., Ikäheimo, S.: Social Influence and Consumption: Evidence from the Automobile Purchases of Neighbors. Rev. Econ. Stat. 90, 735–753 (2008)

    Article  Google Scholar 

  8. Manchanda, P., Xie, Y., Youn, N.: The Role of Targeted Communication and Contagion in Product Adoption. Mark. Sci. 27, 961–976 (2008)

    Article  Google Scholar 

  9. Yang, S., Allenby, G.M.: Modeling Interdependent Customer Preferences. J. Mark. Res. 40, 282–294 (2003)

    Article  Google Scholar 

  10. Steenburgh, T.J., Ainslie, A.: Massively Categorical Variables: Revealing the Information in Zip Codes. Mark. Sci. 22, 40–57 (2003)

    Article  Google Scholar 

  11. Baecke, P., Van den Poel, D.: Data augmentation by predicting spending pleasure using commercially available external data. J. Intell. Inf. Syst., doi:10.1007/s10844-009-0111-x

    Google Scholar 

  12. McCullagh, P., Nelder, J.A.: Generalized linear models. Chapman & Hall, London (1989)

    Book  MATH  Google Scholar 

  13. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. John Wiley & Sons, New York (2000)

    Book  MATH  Google Scholar 

  14. Augustin, N.H., Mugglestone, M.A., Buckland, S.T.: An Autologistic Model for the Spatial Distribution of wildlife. J. Appl. Ecol. 33, 339–347 (1996)

    Article  Google Scholar 

  15. Hoeting, J.A., Leecaster, M., Bowden, D.: An Improved Model for Spatially Correlated Binary Responses. J. Agric. Biol. Environ. Stat. 5, 102–114 (2000)

    Article  MathSciNet  Google Scholar 

  16. He, F., Zhou, J., Zhu, H.: Autologistic Regression Model for the Distribution of Vegetation. J. Agric. Biol. Environ. Stat. 8, 205–222 (2003)

    Article  Google Scholar 

  17. Besang, J.: Spatial Interaction and the Statistical Analysis of Lattice Systems. J. Roy. Statist. Soc. Ser. B (Methodological) 36, 192–236 (1974)

    MathSciNet  Google Scholar 

  18. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or morecorrelated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988)

    Article  MATH  Google Scholar 

  19. Hanley, J.H., McNeil, B.J.: The meaning and use of area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baecke, P., Van den Poel, D. (2011). Incorporating Neighborhood Effects in Customer Relationship Management Models. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., RaÅ›, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21916-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21915-3

  • Online ISBN: 978-3-642-21916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics