Abstract
Traditional customer relationship management (CRM) models often ignore the correlation that could exist in the purchase behavior of neighboring customers. Instead of treating this correlation as nuisance in the error term, a generalized linear autologistic regression can be used to take these neighborhood effects into account and improve the predictive performance of a customer identification model for a Japanese automobile brand. In addition, this study shows that the level on which neighborhoods are composed has an important influence on the extra value that results from the incorporation of spatial autocorrelation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baecke, P., Van den Poel, D.: Improving Purchasing Behavior Predictions by Data Augmentation with Situational Variables. Int. J. Inf. Technol. Decis. Mak. 9, 853–872 (2010)
Bradlow, E.T., Bronnenberg, B., Russell, G.J., Arora, N., Bell, D.R., Duvvuri, S.D., TerHofstede, F., Sismeiro, C., Thomadsen, R., Yang, S.: Spatial Models in Marketing. Mark. Lett. 16, 267–278 (2005)
Bronnenberg, B.J.: Spatial models in marketing research and practice. Appl. Stoch. Models. Bus. Ind. 21, 335–343 (2005)
Bronnenberg, B.J., Mahajan, V.: Unobserved Retailer Behavior in Multimarket Data: Joint Spatial Dependence in Market Shares and Promotional Variables. Mark. Sci. 20, 284–299 (2001)
Bell, D.R., Song, S.: Neighborhood effects and trail on the Internet: Evidence from online grocery retailing. QME-Quant. Mark. Econ. 5, 361–400 (2007)
Moon, S., Russel, G.J.: Predicting Product Purchase from Inferred Customer Similarity: An Autologistic Model Approach. Mark. Sci. 54, 71–82 (2008)
Grinblatt, M., Keloharju, M., Ikäheimo, S.: Social Influence and Consumption: Evidence from the Automobile Purchases of Neighbors. Rev. Econ. Stat. 90, 735–753 (2008)
Manchanda, P., Xie, Y., Youn, N.: The Role of Targeted Communication and Contagion in Product Adoption. Mark. Sci. 27, 961–976 (2008)
Yang, S., Allenby, G.M.: Modeling Interdependent Customer Preferences. J. Mark. Res. 40, 282–294 (2003)
Steenburgh, T.J., Ainslie, A.: Massively Categorical Variables: Revealing the Information in Zip Codes. Mark. Sci. 22, 40–57 (2003)
Baecke, P., Van den Poel, D.: Data augmentation by predicting spending pleasure using commercially available external data. J. Intell. Inf. Syst., doi:10.1007/s10844-009-0111-x
McCullagh, P., Nelder, J.A.: Generalized linear models. Chapman & Hall, London (1989)
Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. John Wiley & Sons, New York (2000)
Augustin, N.H., Mugglestone, M.A., Buckland, S.T.: An Autologistic Model for the Spatial Distribution of wildlife. J. Appl. Ecol. 33, 339–347 (1996)
Hoeting, J.A., Leecaster, M., Bowden, D.: An Improved Model for Spatially Correlated Binary Responses. J. Agric. Biol. Environ. Stat. 5, 102–114 (2000)
He, F., Zhou, J., Zhu, H.: Autologistic Regression Model for the Distribution of Vegetation. J. Agric. Biol. Environ. Stat. 8, 205–222 (2003)
Besang, J.: Spatial Interaction and the Statistical Analysis of Lattice Systems. J. Roy. Statist. Soc. Ser. B (Methodological) 36, 192–236 (1974)
DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or morecorrelated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988)
Hanley, J.H., McNeil, B.J.: The meaning and use of area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baecke, P., Van den Poel, D. (2011). Incorporating Neighborhood Effects in Customer Relationship Management Models. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., RaÅ›, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-21916-0_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21915-3
Online ISBN: 978-3-642-21916-0
eBook Packages: Computer ScienceComputer Science (R0)