Abstract
Many applicative domains require complex multi-relational representations. We propose a family of kernels for relational representations to produce statistical classifiers that can be effectively employed in a variety of such tasks. The kernel functions are defined over the set of objects in a knowledge base parameterized on a notion of context, represented by a committee of concepts expressed through logic clauses. A preliminary feature construction phase based on genetic programming allows for the selection of optimized contexts. An experimental session on the task of similarity search proves the practical effectiveness of the method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)
Cumby, C., Roth, D.: On kernel methods for relational learning. In: Fawcett, T., Mishra, N. (eds.) Proc. of ICML 2003, pp. 107–114. AAAI Press, Menlo Park (2003)
d’Amato, C., Fanizzi, N., Esposito, F.: Induction of optimal semantic semi-distances for clausal knowledge bases. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 29–38. Springer, Heidelberg (2008)
Emde, W., Wettschereck, D.: Relational instance-based learning. In: Saitta, L. (ed.) Proc. of ICML 1996, pp. 122–130. Morgan Kaufmann, San Francisco (1996)
Fanizzi, N., d’Amato, C., Esposito, F.: Learning with kernels in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 210–225. Springer, Heidelberg (2008)
Fanizzi, N., d’Amato, C., Esposito, F.: Statistical learning for inductive query answering on OWL ontologies. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 195–212. Springer, Heidelberg (2008)
Frasconi, P., Passerini, A., Muggleton, S., Lodhi, H.: Declarative kernels. Technical Report 2/2004, Dipartimento di Sistemi e Informatica, Università di Firenze (2004)
Fung, G., Mangasarian, O., Shavlik, J.: Knowledge-based nonlinear kernel classifiers. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 102–113. Springer, Heidelberg (2003)
Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Machine Learning 57(3), 205–232 (2004)
Kirsten, M., Wrobel, S.: Relational distance-based clustering. In: Page, D. (ed.) ILP 1998. LNCS (LNAI), vol. 1446, pp. 261–270. Springer, Heidelberg (1998)
Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: Learning simple relational kernels. In: Proc. of AAAI 2006. AAAI Press, Menlo Park (2006)
Muggleton, S., Lodhi, H., Amini, A., Sternberg, M.: Support vector inductive logic programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS (LNAI), vol. 3735, pp. 163–175. Springer, Heidelberg (2005)
Nienhuys-Cheng, S.-H.: Distances and limits on herbrand interpretations. In: Page, D. (ed.) ILP 1998. LNCS, vol. 1446, pp. 250–260. Springer, Heidelberg (1998)
Passerini, A., Frasconi, P., De Raedt, L.: Kernels on Prolog proof trees: Statistical learning in the ILP setting. Journal of Machine Learning Research 7, 307–342 (2006)
Ramon, I., Bruynooghe, M.: A framework for defining distances between first-order logic objects. TR CW 263. Dept. of Computer Science, Katholieke Universiteit Leuven (1998)
Sebag, M.: Distance induction in first order logic. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS(LNAI), vol. 1297, pp. 264–272. Springer, Heidelberg (1997)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fanizzi, N., d’Amato, C. (2011). Learning with Semantic Kernels for Clausal Knowledge Bases. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-21916-0_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21915-3
Online ISBN: 978-3-642-21916-0
eBook Packages: Computer ScienceComputer Science (R0)