Skip to main content

Learning with Semantic Kernels for Clausal Knowledge Bases

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6804))

Included in the following conference series:

Abstract

Many applicative domains require complex multi-relational representations. We propose a family of kernels for relational representations to produce statistical classifiers that can be effectively employed in a variety of such tasks. The kernel functions are defined over the set of objects in a knowledge base parameterized on a notion of context, represented by a committee of concepts expressed through logic clauses. A preliminary feature construction phase based on genetic programming allows for the selection of optimized contexts. An experimental session on the task of similarity search proves the practical effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)

    Book  Google Scholar 

  2. Cumby, C., Roth, D.: On kernel methods for relational learning. In: Fawcett, T., Mishra, N. (eds.) Proc. of ICML 2003, pp. 107–114. AAAI Press, Menlo Park (2003)

    Google Scholar 

  3. d’Amato, C., Fanizzi, N., Esposito, F.: Induction of optimal semantic semi-distances for clausal knowledge bases. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 29–38. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Emde, W., Wettschereck, D.: Relational instance-based learning. In: Saitta, L. (ed.) Proc. of ICML 1996, pp. 122–130. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  5. Fanizzi, N., d’Amato, C., Esposito, F.: Learning with kernels in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 210–225. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Fanizzi, N., d’Amato, C., Esposito, F.: Statistical learning for inductive query answering on OWL ontologies. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 195–212. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Frasconi, P., Passerini, A., Muggleton, S., Lodhi, H.: Declarative kernels. Technical Report 2/2004, Dipartimento di Sistemi e Informatica, Università di Firenze (2004)

    Google Scholar 

  8. Fung, G., Mangasarian, O., Shavlik, J.: Knowledge-based nonlinear kernel classifiers. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 102–113. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Machine Learning 57(3), 205–232 (2004)

    Article  MATH  Google Scholar 

  10. Kirsten, M., Wrobel, S.: Relational distance-based clustering. In: Page, D. (ed.) ILP 1998. LNCS (LNAI), vol. 1446, pp. 261–270. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: Learning simple relational kernels. In: Proc. of AAAI 2006. AAAI Press, Menlo Park (2006)

    Google Scholar 

  12. Muggleton, S., Lodhi, H., Amini, A., Sternberg, M.: Support vector inductive logic programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS (LNAI), vol. 3735, pp. 163–175. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Nienhuys-Cheng, S.-H.: Distances and limits on herbrand interpretations. In: Page, D. (ed.) ILP 1998. LNCS, vol. 1446, pp. 250–260. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Passerini, A., Frasconi, P., De Raedt, L.: Kernels on Prolog proof trees: Statistical learning in the ILP setting. Journal of Machine Learning Research 7, 307–342 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Ramon, I., Bruynooghe, M.: A framework for defining distances between first-order logic objects. TR CW 263. Dept. of Computer Science, Katholieke Universiteit Leuven (1998)

    Google Scholar 

  16. Sebag, M.: Distance induction in first order logic. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS(LNAI), vol. 1297, pp. 264–272. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanizzi, N., d’Amato, C. (2011). Learning with Semantic Kernels for Clausal Knowledge Bases. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21916-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21915-3

  • Online ISBN: 978-3-642-21916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics