Abstract
Automatic processing of text documents requires techniques that can go beyond the lexical level, and are able to handle the semantics underlying natural language sentences. A support for such techniques can be provided by taxonomies that connect terms to the underlying concepts, and concepts to each other according to different kinds of relationships. An outstanding example of such a kind of resources is WordNet. On the other hand, whenever automatic inferences are to be made on a given domain, a generalization technique, and corresponding operational procedures, are needed. This paper proposes a generalization technique for taxonomic information and applies it to WordNet, providing examples that prove its behavior to be sensible and effective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Miller, G.A., Beckwith, R., Fellbaum, C., Miller, K., Gross, D.: Introduction to wordnet: An on-line lexical database. International Journal of Lexicography 3(4), 235–244 (1990)
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38, 39–41 (1995)
Bentivogli, L., Forner, P., Magnini, B., Pianta, E.: Revising the wordnet domains hierarchy: semantics, coverage and balancing. In: Proceedings of the Workshop on Multilingual Linguistic Ressources, MLR 2004, pp. 101–108. Association for Computational Linguistics, Stroudsburg (2004)
Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambiguation using wordnet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer, Heidelberg (2002)
Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11, 93–130 (1999)
Budanitsky, A., Hirst, G.: Semantic distance in wordnet: An experimental, application-oriented evaluation of five measures. In: Proc. Workshop on WordNet and Other Lexical Resources, 2nd Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh (2001)
Ferilli, S., Biba, M., Di Mauro, N., Basile, T.M., Esposito, F.: Plugging taxonomic similarity in first-order logic horn clauses comparison. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 131–140. Springer, Heidelberg (2009)
Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning. In: Proceedings of the 5th International Joint Conference on Artificial intelligence, vol. 1, pp. 305–310. Morgan Kaufmann Publishers Inc., San Francisco (1977)
Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of datalog theories. In: Fuchs, N. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)
Ferilli, S., Basile, T.M.A., Biba, M., Di Mauro, N., Esposito, F.: A general similarity framework for horn clause logic. Fundamenta Informaticae 90, 43–66 (2009)
Ferilli, S., Fanizzi, N., Semeraro, G.: Learning logic models for automated text categorization. In: Proceedings of the 7th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence, UK, pp. 81–86. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ferilli, S., Di Mauro, N., Basile, T.M.A., Esposito, F. (2011). A Taxonomic Generalization Technique for Natural Language Processing. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-21916-0_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21915-3
Online ISBN: 978-3-642-21916-0
eBook Packages: Computer ScienceComputer Science (R0)