Skip to main content

A Taxonomic Generalization Technique for Natural Language Processing

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6804))

Included in the following conference series:

  • 3771 Accesses

Abstract

Automatic processing of text documents requires techniques that can go beyond the lexical level, and are able to handle the semantics underlying natural language sentences. A support for such techniques can be provided by taxonomies that connect terms to the underlying concepts, and concepts to each other according to different kinds of relationships. An outstanding example of such a kind of resources is WordNet. On the other hand, whenever automatic inferences are to be made on a given domain, a generalization technique, and corresponding operational procedures, are needed. This paper proposes a generalization technique for taxonomic information and applies it to WordNet, providing examples that prove its behavior to be sensible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Miller, G.A., Beckwith, R., Fellbaum, C., Miller, K., Gross, D.: Introduction to wordnet: An on-line lexical database. International Journal of Lexicography 3(4), 235–244 (1990)

    Article  Google Scholar 

  2. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38, 39–41 (1995)

    Article  Google Scholar 

  4. Bentivogli, L., Forner, P., Magnini, B., Pianta, E.: Revising the wordnet domains hierarchy: semantics, coverage and balancing. In: Proceedings of the Workshop on Multilingual Linguistic Ressources, MLR 2004, pp. 101–108. Association for Computational Linguistics, Stroudsburg (2004)

    Chapter  Google Scholar 

  5. Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambiguation using wordnet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer, Heidelberg (2002)

    Google Scholar 

  6. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11, 93–130 (1999)

    MATH  Google Scholar 

  7. Budanitsky, A., Hirst, G.: Semantic distance in wordnet: An experimental, application-oriented evaluation of five measures. In: Proc. Workshop on WordNet and Other Lexical Resources, 2nd Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh (2001)

    Google Scholar 

  8. Ferilli, S., Biba, M., Di Mauro, N., Basile, T.M., Esposito, F.: Plugging taxonomic similarity in first-order logic horn clauses comparison. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 131–140. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning. In: Proceedings of the 5th International Joint Conference on Artificial intelligence, vol. 1, pp. 305–310. Morgan Kaufmann Publishers Inc., San Francisco (1977)

    Google Scholar 

  10. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of datalog theories. In: Fuchs, N. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Ferilli, S., Basile, T.M.A., Biba, M., Di Mauro, N., Esposito, F.: A general similarity framework for horn clause logic. Fundamenta Informaticae  90, 43–66 (2009)

    Google Scholar 

  12. Ferilli, S., Fanizzi, N., Semeraro, G.: Learning logic models for automated text categorization. In: Proceedings of the 7th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence, UK, pp. 81–86. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferilli, S., Di Mauro, N., Basile, T.M.A., Esposito, F. (2011). A Taxonomic Generalization Technique for Natural Language Processing. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21916-0_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21915-3

  • Online ISBN: 978-3-642-21916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics