Skip to main content

PMAFC: A New Probabilistic Memetic Algorithm Based Fuzzy Clustering

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6804))

Included in the following conference series:

  • 3767 Accesses

Abstract

In this article, a new stochastic approach in form of memetic algorithm for fuzzy clustering is presented. The proposed probabilistic memetic algorithm based fuzzy clustering technique uses real-coded encoding of the cluster centres and two fuzzy clustering validity measures to compute a priori probability for an objective function. Moreover, the adaptive arithmetic recombination and opposite based local search techniques are used to get better performance of the proposed algorithm by exploring the search space more powerfully. The performance of the proposed clustering algorithm has been compared with that of some well-known existing clustering algorithms for four synthetic and two real life data sets. Statistical significance test based on analysis of variance (ANOVA) has been conducted to establish the statistical significance of the superior performance of the proposed clustering algorithm. Matlab version of the software is available at http://sysbio.icm.edu.pl/memetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ferguson, G.A., Takane, Y.: Statistical Analysisin Psychology and Education, 6th edn. McGraw-Hill Ryerson Limited, New York (2005)

    Google Scholar 

  2. Bandyopadhyay, S.: Simulated annealing using a reversible jump markov chain monte carlo algorithm for fuzzy clustering. IEEE Transactions on Knowledge and data Engineering 17(4), 479–490 (2005)

    Article  Google Scholar 

  3. Bandyopadhyay, S., Maulik, U.: Nonparametric genetic clustering: Comparison validity indices. IEEE Transactions on Systems, Man and Cybernetics, Part C 31(1), 120–125 (2001)

    Article  Google Scholar 

  4. Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognition 35, 1197–1208 (2002)

    Article  MATH  Google Scholar 

  5. Bandyopadhyay, S., Murthy, C.A., Pal, S.K.: Pattern classification using genetic algorithms. Pattern Recognition Letters 16, 801–808 (1995)

    Article  Google Scholar 

  6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  7. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  8. Jardine, N., Sibson, R.: Mathematical Taxonomy. John Wiley and Sons, Chichester (1971)

    MATH  Google Scholar 

  9. Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Transactions on Geoscience and Remote Sensing 41(5), 1075–1081 (2003)

    Article  Google Scholar 

  10. Maulik, U., Bandyopadhyay, S., Saha, I.: Integrating clustering and supervised learning for categorical data analysis. IEEE Transactions on Systems, Man and Cybernetics Part-A 40(4), 664–675 (2010)

    Article  Google Scholar 

  11. Maulik, U., Saha, I.: Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery. Pattern Recognition 42(9), 2135–2149 (2009)

    Article  MATH  Google Scholar 

  12. Maulik, U., Saha, I.: Automatic fuzzy clustering using modified differential evolution for image classification. IEEE Transactions on Geoscience and Remote Sensing 48(9), 3503–3510 (2010)

    Article  Google Scholar 

  13. Rahnamayana, S., Tizhoosh, H.R., Salamaa, M.M.A.: A novel population initialization method for accelerating evolutionary algorithms. Computers & Mathematics with Applications 53(10), 1605–1614 (2007)

    Article  MathSciNet  Google Scholar 

  14. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Compt. App. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  15. Saha, I., Maulik, U., Plewczynskia, D.: A new multi-objective technique for differential fuzzy clustering. Applied Soft Computing 11(2), 2765–2776 (2010)

    Article  Google Scholar 

  16. Tse, S.M., Liang, Y., Leung, K.S., Lee, K.H., Mok, T.S.: A memetic algorithm for multiple-drug cancer chemotherapy schedule optimization. IEEE Trans. Syst. Man Cybern. B 37(1), 84–91 (2007)

    Article  Google Scholar 

  17. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 841–847 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saha, I., Maulik, U., Plewczynski, D. (2011). PMAFC: A New Probabilistic Memetic Algorithm Based Fuzzy Clustering. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., RaÅ›, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21916-0_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21915-3

  • Online ISBN: 978-3-642-21916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics