Skip to main content

Adaptive Immunization in Dynamic Networks

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6804))

Included in the following conference series:

  • 3783 Accesses

Abstract

In recent years, immunization strategies have been developed for stopping epidemics in complex-network-like environments. So far, there exist two limitations in the current propagation models and immunization strategies: (1) the propagation models focus only on the network structure underlying virus propagation and the models are static; (2) the immunization strategies are offline and non-adaptive in nature, i.e., these strategies pre-select and pre-immunize “important” nodes before virus propagation starts. In this paper, we extend an interactive email propagation model in order to observe the effects of human behaviors on virus propagation, and furthermore we propose an adaptive AOC-based immunization strategy for protecting dynamically-evolving email networks. Our experimental results have shown that our strategy as an online strategy can adapt to the dynamic changes (e.g., growth) of networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zou, C.C., Towsley, D., Gong, W.: Modeling and simulation study of the propagation and defense of internet e-mail worms. IEEE Transaction on Dependable and Secure Computing 4(2), 105–118 (2007)

    Article  Google Scholar 

  2. Gao, C., Liu, J., Zhong, N.: Network immunization and virus propagation in email networks: experimental evaluation and analysis. Knowledge and Information Systems 27(2), 253–279 (2011)

    Article  Google Scholar 

  3. Lloyd, A.L., May, R.M.: How viruses spread among computers and people. Science 292(5520), 1316–1317 (2001)

    Article  Google Scholar 

  4. Liu, J., Xia, S.: Effective epidemic control via strategic vaccine deployment: A systematic approach. In: Proceedings of the 1st ACM International Health Informatics Symposium (IHI 2010), pp. 91–99 (2010)

    Google Scholar 

  5. Cohen, R., Havlin, S., Ben-Averaham, D.: Efficient immunization strategies for computer networks and populations. Physical Review Letters 91(24), 247901 (2003)

    Article  Google Scholar 

  6. Gallos, L.K., Liljeros, F., Argyrakis, P., Bunde, A., Havlin, S.: Improving immunization strategies. Physical Review E 75(4), 045104 (2007)

    Article  Google Scholar 

  7. Chen, Y., Paul, G., Havlin, S., Liljeros, F., Stanley, H.E.: Finding a better immunization strategy. Physical Review Letters 101(5), 058701 (2008)

    Article  Google Scholar 

  8. Echenique, P., Gomez-Gardenes, J., Moreno, Y., Vazquez, A.: Distance-d covering problem in scale-free networks with degree correlation. Physical Review E 71(3), 035102 (2005)

    Article  Google Scholar 

  9. Liu, J., Gao, C., Zhong, N.: A distributed immunization strategy based on autonomy-oriented computing. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 503–512. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Gao, C., Liu, J., Zhong, N.: Network immunization with distributed autonomy-oriented entities. IEEE Transactions on Parallel and Distributed Systems (2010), doi: 10.1109/TPDS.2010.197

    Google Scholar 

  11. Keeling, M.J., Eames, K.T.: Networks and epidemic models. Journal of the Royal Society Interface 2(4), 295–307 (2005)

    Article  Google Scholar 

  12. Barabasi, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)

    Article  Google Scholar 

  13. Eckmann, J.P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structure in email traffic. Proceedings of the National Academy of Sciences of the United States of America 101(40), 14333–14337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Malmgren, R.D., Stouffer, D.B., Campanharo, A.S., Amaral, L.A.N.: On universality in human correspondence activity. Science 325(5948), 1696–1700 (2009)

    Article  Google Scholar 

  15. Newman, M.E.J.: The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America 98(2), 404–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68(6), 065103 (2003)

    Article  Google Scholar 

  17. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distribution in empirical data. SIAM Review 51(4), 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bu, T., Towsley, D.: On distinguishing between internet power law topology generators. In: Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), pp. 638–647 (2002)

    Google Scholar 

  19. Gao, C., Liu, J.: Modeling and predicting the dynamics of mobile virus spread affected by human behavior. In: Proceedings of the 12th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2011 (in press, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J., Gao, C. (2011). Adaptive Immunization in Dynamic Networks. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21916-0_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21915-3

  • Online ISBN: 978-3-642-21916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics