Skip to main content

A Heuristic Homotopic Path Simplification Algorithm

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6784))

Included in the following conference series:

  • 1388 Accesses

Abstract

We study the well-known problem of approximating a polygonal path P by a coarse one, whose vertices are a subset of the vertices of P. In this problem, for a given error, the goal is to find a path with the minimum number of vertices while preserving the homotopy in presence of a given set of extra points in the plane. We present a heuristic method for homotopy-preserving simplification under any desired measure for general paths. Our algorithm for finding homotopic shortcuts runs in O( mlog(n + m) + nlogn log(nm) + k) time, where k is the number of homotopic shortcuts. Using this method, we obtain an O(n 2 + mlog(n + m) + nlogn log(nm)) time algorithm for simplification under the Hausdorff measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Berg, M., van Kreveld, M., Schirra, S.: A New Approach to Subdivision Simplification. In: Twelfth International Symposium on Computer Assisted Cartography, vol. 04, pp. 79–88 (1995)

    Google Scholar 

  2. de Berg, M., van Kreveld, M., Schirra, S.: Topologically correct subdivision simplification using the bandwidth criterion. Cartography and GIS 25, 243–257 (1998)

    Google Scholar 

  3. Buzer, L.: Optimal Simplification of Polygonal Chain for Rendering. In: 23rd ACM Symposium on Computational Geometry (SoCG), pp. 168–174 (2007)

    Google Scholar 

  4. Goodrich, M.T.: Efficient piecewise-linear function approximation using the uniform metric. Discrete Computational Geometry 14, 445–462 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Agarwal, P.K., Harpeled, S., Mustafa, N.H., Wang, Y.: Near-linear time approximation algorithms for curve simplification. Algorithmica 42, 203–219 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aronov, B., Asano, T., Katoh, N., Mehlhorn, K., Tokuyama, T.: Polyline fitting of planar points under min-sum criteria. International Journal of Computational Geometry and Applications 16, 97–116 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.: Streaming algorithms for line simplifications. In: Proc. ACM Symposium on Computational Geometry (SoCG), pp. 175–183 (2007)

    Google Scholar 

  8. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Canadian Cartographer 10(2), 112–122 (1973)

    Article  Google Scholar 

  9. Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line simplification algorithm. In: Proceeding of 5th International Symposium on Spatial Data Handling, pp. 134–143 (1992)

    Google Scholar 

  10. Li, Z., Openshaw, S.: Algorithms for automated line generalization based on a natural principle of objective generalization. International Journal of Geographic Information Systems 6, 373–389 (1992)

    Article  Google Scholar 

  11. Kurozumi, Y., Davis, W.A.: Polygonal approximation by the minimax method. Comput. Graph. Image Process 19, 248–264 (1982)

    Article  MATH  Google Scholar 

  12. Hobby, J.D.: Polygonal approximations that minimize the number of inflections. In: Proceeding of the 4th ACM-SIAM Symposium on Discrete Algorithms, pp. 93–102 (1993)

    Google Scholar 

  13. Asano, T., Katoh, N.: Number theory helps line detection in digital images. In: In Proceeding of 4th Annual International Symposium on Algorithms and Computing, vol. 762, pp. 313–322 (1993)

    Google Scholar 

  14. Guibas, L.J., Hershberger, J.E., Mitchell, J.S.B., Snoeyink, J.S.: Approximating polygons and subdivisions with minimum link paths. International Journal of Computational Geometry and Applications 3(4), 383–415 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Estkowski, R., Mitchell, J.S.: Simplifying a polygonal subdivision while keeping it simple. In: Proceedings of the 17th Annual Symposium on Computational Geometry, pp. 40–49 (2001)

    Google Scholar 

  16. Daneshpajouh, S., Abam, M.A., Deleuran, L., Ghodsi, M.: Computing Strongly Homotopic Line Simplification in the Plane. In: European Workshop on Computational Geometry (2011)

    Google Scholar 

  17. Preparata, F.P., Shamos, M.I.: Computational Geometry - an introduction. Springer, New York (1985)

    Book  MATH  Google Scholar 

  18. Toussaint, G.T.: An optimal algorithm for computing the convex hull of a set of points in a polygon. In: Proceeding of Signal Processing III: Theories and Applications, EURASIP 1986, Part 2, pp. 853–856 (1986)

    Google Scholar 

  19. Ben-Moshe, B., Hall-Holt, O., Katz, M., Mitchell, J.: Computing the visibility graph of points within a polygon. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 27–35 (2004)

    Google Scholar 

  20. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. Journal of Comput. Syst. Sci. 39, 126–152 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments. In: Proceeding of 3rd Annual International Symposium on Algorithms and Computing, vol. 650, pp. 378–387 (1992)

    Google Scholar 

  22. Imai, H., Iri, M.: Polygonal approximations of a curve-formulations and algorithms. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daneshpajouh, S., Ghodsi, M. (2011). A Heuristic Homotopic Path Simplification Algorithm. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21931-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21930-6

  • Online ISBN: 978-3-642-21931-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics