Abstract
Semi-infinite programming (SIP) problems can be efficiently solved by reduction type methods. Here, we present a new reduction method for SIP, where the multi-local optimization is carried out with a multi-local branch-and-bound method, the reduced (finite) problem is approximately solved by an interior point method, and the global convergence is promoted through a two-dimensional filter line search. Numerical experiments with a set of well-known problems are shown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. Journal of Optimization Theory and Applications 89, 507–541 (1996)
Ben-Tal, A., Teboule, M., Zowe, J.: Second order necessary optimality conditions for semi-infinite programming problems. Lecture Notes in Control and Information Sciences, vol. 15, pp. 17–30 (1979)
Coope, I.D., Watson, G.: A projected Lagrangian algorithm for semi-infinite programming. Mathematical Programming 32, 337–356 (1985)
Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Mathematical Programming 91, 239–269 (2002)
Goberna, M.A., López, M.A. (eds.): Semi-Infinite Programming. Recent Advances in Nonconvex Optimization and Its Applications. Springer, Heidelberg (2001)
Hendrix, E.M.T., G-Tóth, B.: Introduction to nonlinear and global optimization. Springer optimization and its applications, vol. 37. Springer, Heidelberg (2010)
Hettich, R., Jongen, H.T.: Semi-infinite programming: conditions of optimality and applications. In: Stoer, J. (ed.) Lectures Notes in Control and Information Science - Optimization Techniques, vol. 7, pp. 1–11. Springer, Heidelberg (1978)
Hettich, R., Kortanek, K.O.: Semi-infinite programming: Theory, methods and applications. SIAM Review 35, 380–429 (1993)
Horst, R., Tuy, H.: Global optimization. deterministic approaches. Springer, Heidelberg (1996)
Ingber, L.: Very fast simulated re-annealing. Mathematical and Computer Modelling 12, 967–973 (1989)
Li, D.-H., Qi, L., Tam, J., Wu, S.-Y.: A smoothing Newton method for semi-infinite programming. Journal of Global Optimization 30, 169–194 (2004)
Ling, C., Ni, Q., Qi, L., Wu, S.-Y.: A new smoothing Newton-type algorithm for semi-infinite programming. Journal of Global Optimization 47, 133–159 (2010)
Liu, G.-x.: A homotopy interior point method for semi-infinite programming problems. Journal of Global Optimization 37, 631–646 (2007)
López, M., Still, G.: Semi-infinite programming. European Journal of Operations Research 180, 491–518 (2007)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)
Parsopoulos, K., Plagianakos, V., Magoulas, G., Vrahatis, M.: Objective function stretching to alleviate convergence to local minima. Nonlinear Analysis 47, 3419–3424 (2001)
Pereira, A.I.P.N., Fernandes, E.M.G.P.: On a reduction line search filter method for nonlinear semi-infinite programming problems. In: Sakalauskas, L., Weber, G.W., Zavadskas, E.K. (eds.) Euro Mini Conference Continuous Optimization and Knowledge-Based Technologies, vol. 9, pp. 174–179 (2008), ISBN: 978-9955-28-283-9
Pereira, A.I.P.N., Fernandes, E.M.G.P.: An Hyperbolic Penalty Filter Method for Semi-Infinite Programming. Numerical Analysis and Applied Mathematics. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 1048, pp. 269–273. Springer, Heidelberg (2008)
Pereira, A.I.P.N., Fernandes, E.M.G.P.: A reduction method for semi-infinite programming by means of a global stochastic approach. Optimization 58, 713–726 (2009)
Price, C.J., Coope, I.D.: Numerical experiments in semi-infinite programming. Computational Optimization and Applications 6, 169–189 (1996)
Qi, L., Wu, W.S.-Y., Zhou, G.: Semismooth Newton methods for solving semi-infinite programming problems. Journal of Global Optimization 27, 215–232 (2003)
Qi, L., Ling, C., Tong, X., Zhou, G.: A smoothing projected Newton-type algorithm for semi-infinite programming. Computational Optimization and Applications 42, 1–30 (2009)
Reemtsen, R., Rückmann, J.-J.: Semi-infinite programming. Nonconvex Optimization and Its Applications, vol. 25. Kluwer Academic Publishers, Dordrecht (1998)
Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods, Mathematical Programming Ser. B 87, 303–316 (2000)
Silva, R., Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results, preprint 08-49, Dept. Mathematics, U. Coimbra (2008)
Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM Journal on Control and Optimization 42, 769–788 (2003)
Tanaka, Y., Fukushima, M., Ibaraki, T.: A comparative study of several semi-infinite nonlinear programmnig algorithms. European Journal of Operations Research 36, 92–100 (1988)
Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal-dual interior-point filter method for nonlinear programming. Mathematical Programming 100, 379–410 (2004)
Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Computational Optimization and Applications 13, 231–252 (1999)
Vaz, A.I.F., Fernandes, E.M.G.P., Gomes, M.P.S.F.: Robot trajectory planning with semi-infinite programming. European Journal of Operational Research 153, 607–617 (2004)
Vaz, A.I.F., Ferreira, E.C.: Air pollution control with semi-infinite programming. Applied Mathematical Modelling 33, 1957–1969 (2009)
Vázquez, F.G., Rückmann, J.-J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. Journal of Computational and Applied Mathematics 217, 394–419 (2008)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM Journal on Optimization 16, 1–31 (2005)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: local convergence. SIAM Journal on Optimization 16, 32–48 (2005)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 25–57 (2006)
Weber, G.-W., Tezel, A.: On generalized semi-infinite optimization of genetic network. TOP 15, 65–77 (2007)
Yi-gui, O.: A filter trust region method for solving semi-infinite programming problems. Journal of Applied Mathematics and Computing 29, 311–324 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pereira, A.I., Fernandes, E.M.G.P. (2011). Branch-and-Bound Reduction Type Method for Semi-Infinite Programming. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-21931-3_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21930-6
Online ISBN: 978-3-642-21931-3
eBook Packages: Computer ScienceComputer Science (R0)