Abstract
By exploiting the potentialities of collaborative work and of high throughput computing on the grid platform recently deployed within the European Grid Initiative and made available to the virtual organization COMPCHEM, it has been possible to extend GEMS, a simulator of molecular systems, to reproduce in an ab initio fashion the signal measured in molecular beam experiments. As a case study the crossed beam experiment measuring the differential cross section of the OH(v OH = 0,j OH = 0) + CO(v CO = 0,j CO = 0) → H + CO2 reaction has been considered. The results of the calculations provide a univocal evaluation of the accuracy of the ab initio potential energy surfaces proposed in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Laganà, A., Riganelli, A.: Computational Reaction and Molecular Dynamics: from Simple Systems and Rigorous Methods to Large Systems and Approximate Methods in Reaction and Molecular Dynamics. In: Laganà, A., Riganelli, A. (eds.) Springer Lecture Notes in Chemistry, vol. 75 (2000)
Balucani, N., Capozza, G., Leonori, F., Segoloni, E., Casavecchia, P.: Int. Rev. Phys. Chem. 25, 109–163 (2006)
Balucani, N., Capozza, G., Cartechini, L., Bergeat, A., Bobbenkamp, R., Casavecchia, P., Aoiz, F.J., Bañares, L., Honvault, P., Bussery-Honvault, B., Launay, J.M.: Phys. Chem. Chem. Phys. 6, 4957–4967 (2004)
Balucani, N., Capozza, G., Segoloni, E., Russo, A., Bobbenkamp, R., Casavecchia, P., González-Lezana, T., Rackham, E.J., Bañares, L., Aoiz, F.J.: J. Chem. Phys. 122, 234–309 (2005)
Balucani, N., Casavecchia, P., Bañares, L., Aoiz, F.J., González-Lezana, T., Honvault, P., Launay, J.M.: J. Phys. Chem. A 110, 817–829 (2006)
Balucani, N., Casavecchia, P., Aoiz, F.J., Bañares, L., Launay, J.M., Bussery-Honvault, B., Honvault, P.: Mol. Phys. 108, 373–380 (2010)
Pessoa de Miranda, M., Crocchianti, S., Laganà, A.: J. Phys. Chem. 103, 10776–10782 (1999)
Alvariño, J.M., Aquilanti, V., Cavalli, S., Crocchianti, S., Laganà, A., Martinez, T.: J. Phys. Chem. A 102, 9638–9644 (1998)
Skouteris, D., Crocchianti, S., Laganà, A.: Chem. Phys. 349, 170–180 (2008)
Skouteris, D., De Fazio, D., Aquilanti, V., Cavalli, S.: J. Phys. Chem. A 113, 14807–14812 (2009)
Taylor, J.R.: Scattering Theory: the Quantum Theory of Non-relativistic collisions. Wiley, New York (1972)
Laganà, A.: Towards a Grid Based Universal Molecular Simulator. In: Laganà, A., Lendvay, G. (eds.) Theory of the Dynamics of Elementary Molecular Reactions, pp. 363–380. Kluwer, Dordrecht (2004)
Costantini, A., Gervasi, O., Manuali, C., Faginas Lago, N., Rampino, S., Laganà, A.: Journal of Grid Computing 8, 571–586 (2010)
Laganá, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry virtual organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006)
Computational Chemistry (COMPCHEM) Virtual Organization, http://www.compchem.unipg.it
Gervasi, O., Laganà, A.: Future Generations of Computer Systems 20, 703–715 (2004)
Rampino, S., Monari, A., Evangelisti, S., Rossi, E., Ruud, K., Laganà, A.: A priori modeling of chemical reactions on a grid-based virtual laboratory. In: Cracow 2009 Grid Workshop, pp. 164–171 (2010)
Garcia, E., Saracibar, A., Laganà, A.: Theor. Chem. Acc. 128, 727–734 (2011)
Alagia, M., Balucani, N., Casavecchia, P., Stranges, D., Volpi, G.G.: J. Chem. Phys. 98, 8341–8344 (1993)
Alagia, M., Balucani, N., Casavecchia, P., Stranges, D., Volpi, G.G.: J. Chem. Soc. Faraday Trans. 91, 575–596 (1995)
Garcia, E., Saracibar, A., Zuazo, L., Laganà, A.: Chem. Phys. 332, 162–175 (2007)
Sun, H.Y., Law, C.K.J.: Mol. Struc. – THEOCHEM 862, 138–147 (2008)
Bowman, J.M., Schatz, G.C.: Annu. Rev. Phys. Chem. 46, 169–195 (1995)
Kudla, K., Schatz, G.C.: In: Liu, K., Wagner, A. (eds.) The Chemical Dynamics and Kinetics of Small Radicals, pp. 438–465. World Scientific, Singapore (1995)
Clary, D.C., Schatz, G.C.: J. Chem. Phys. 99, 4578–4589 (1993)
Hernández, M.I., Clary, D.C.: J. Chem. Phys. 101, 2779–2784 (1994)
Goldfield, E.M., Gray, S.K., Schatz, G.C.: J. Chem. Phys. 102, 8807–8817 (1995)
Yu, H.G., Muckerman, J.T., Sears, T.J.: Chem. Phys. Lett. 349, 547–554 (2001)
Lakin, M.J., Troya, D., Schatz, G.C., Harding, L.B.: J. Chem. Phys. 119, 5848–5859 (2003)
Valero, R., van Hemert, M.C., Kroes, G.J.: Chem. Phys. Lett. 393, 236–244 (2004)
Zhang, D.H., Zhang, J.Z.H.: J. Chem. Phys. 103, 6512–6519 (1995)
Balakrishnan, N., Billing, G.D.: J. Chem. Phys. 104, 4005–4011 (1996)
Dzegilenko, F.N., Bowman, J.M.: J. Chem. Phys. 108, 511–518 (1998)
Billing, G.D., Muckerman, J.T., Yu, H.G.: J. Chem. Phys. 117, 4755–4760 (2002)
Valero, R., Kroes, G.J.: J. Chem. Phys. 117, 8736–8744 (2002)
McCormack, D.A., Kroes, G.J.: Chem. Phys. Lett. 352, 281–287 (2002); Erratum, ibid 373, 648–649 (2003)
Medvedev, D.M., Gray, S.K., Goldfield, E.M., Lakin, M.J., Troya, D., Schatz, G.C.: J. Chem. Phys. 120, 1231–1238 (2004)
He, Y., Goldfield, E.M., Gray, S.K.: J. Chem. Phys. 121, 823–828 (2004)
Valero, R., McCormack, D.A., Kroes, G.J.: J. Chem. Phys. 120, 4263–4272 (2004)
Valero, R., Kroes, G.J.: Phys. Rev. A 70, 040701 (2004)
Valero, R., Kroes, G.J.: J. Phys. Chem. A 108, 8672–8681 (2004)
Valero, R., Kroes, G.J.: Chem. Phys. Lett. 417, 43–47 (2006)
Zhang, S., Medvedev, D.M., Goldfield, E.M., Gray, S.K.: J. Chem. Phys. 125, 164–312 (2006)
Song, X., Li, J., Hou, H., Wang, B.: J. Chem. Phys. 125, 094301 (2006)
Murrell, J.N., Carter, S., Farantos, S.C., Huxley, P., Varandas, A.J.C.: Molecular Potential Energy Functions. Wiley, Chichester (1984)
Yang, M., Zhang, D.H., Collins, M.A., Lee, S.Y.: J. Chem. Phys. 115, 174–178 (2001)
Hase, W.L., Duchovic, R.J., Hu, X., Komornicki, A., Lim, K.F., Lu, D., Peslherbe, G.H., Swamy, K.N., Van de Linde, S.R., Varandas, A.J.C., Wang, H., Wolf, R.J.: QCPE Bull. 16, 43–53 (1996)
Alagia, M., Aquilanti, V., Ascenzi, D., Balucani, N., Cappelletti, D., Cartechini, L., Casavecchia, P., Pirani, F., Sanchini, G., Volpi, G.G.: Israel J. Chem. 37, 329–342 (1997)
Leonori, F., Petrucci, R., Hickson, K.H., Segoloni, E., Balucani, N., Le Picard, S., Foggi, P., Casavecchia, P.: Planet. Space Sci. 56, 1658–1673 (2008)
Leonori, F., Hickson, K.H., Le Picard, S., Wang, X., Petrucci, R., Foggi, P., Balucani, N., Casavecchia, P.: Mol. Phys. 108, 1097–1113 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Laganá, A., Balucani, N., Crocchianti, S., Casavecchia, P., Garcia, E., Saracibar, A. (2011). An Extension of the Molecular Simulator GEMS to Calculate the Signal of Crossed Beam Experiments. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-21931-3_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21930-6
Online ISBN: 978-3-642-21931-3
eBook Packages: Computer ScienceComputer Science (R0)