Skip to main content

An Extension of the Molecular Simulator GEMS to Calculate the Signal of Crossed Beam Experiments

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Abstract

By exploiting the potentialities of collaborative work and of high throughput computing on the grid platform recently deployed within the European Grid Initiative and made available to the virtual organization COMPCHEM, it has been possible to extend GEMS, a simulator of molecular systems, to reproduce in an ab initio fashion the signal measured in molecular beam experiments. As a case study the crossed beam experiment measuring the differential cross section of the OH(v OH = 0,j OH = 0) + CO(v CO = 0,j CO = 0) → H + CO2 reaction has been considered. The results of the calculations provide a univocal evaluation of the accuracy of the ab initio potential energy surfaces proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laganà, A., Riganelli, A.: Computational Reaction and Molecular Dynamics: from Simple Systems and Rigorous Methods to Large Systems and Approximate Methods in Reaction and Molecular Dynamics. In: Laganà, A., Riganelli, A. (eds.) Springer Lecture Notes in Chemistry, vol. 75 (2000)

    Google Scholar 

  2. Balucani, N., Capozza, G., Leonori, F., Segoloni, E., Casavecchia, P.: Int. Rev. Phys. Chem. 25, 109–163 (2006)

    Article  Google Scholar 

  3. Balucani, N., Capozza, G., Cartechini, L., Bergeat, A., Bobbenkamp, R., Casavecchia, P., Aoiz, F.J., Bañares, L., Honvault, P., Bussery-Honvault, B., Launay, J.M.: Phys. Chem. Chem. Phys. 6, 4957–4967 (2004)

    Article  Google Scholar 

  4. Balucani, N., Capozza, G., Segoloni, E., Russo, A., Bobbenkamp, R., Casavecchia, P., González-Lezana, T., Rackham, E.J., Bañares, L., Aoiz, F.J.: J. Chem. Phys. 122, 234–309 (2005)

    Article  Google Scholar 

  5. Balucani, N., Casavecchia, P., Bañares, L., Aoiz, F.J., González-Lezana, T., Honvault, P., Launay, J.M.: J. Phys. Chem. A 110, 817–829 (2006)

    Article  Google Scholar 

  6. Balucani, N., Casavecchia, P., Aoiz, F.J., Bañares, L., Launay, J.M., Bussery-Honvault, B., Honvault, P.: Mol. Phys. 108, 373–380 (2010)

    Article  Google Scholar 

  7. Pessoa de Miranda, M., Crocchianti, S., Laganà, A.: J. Phys. Chem. 103, 10776–10782 (1999)

    Article  Google Scholar 

  8. Alvariño, J.M., Aquilanti, V., Cavalli, S., Crocchianti, S., Laganà, A., Martinez, T.: J. Phys. Chem. A 102, 9638–9644 (1998)

    Article  Google Scholar 

  9. Skouteris, D., Crocchianti, S., Laganà, A.: Chem. Phys. 349, 170–180 (2008)

    Article  Google Scholar 

  10. Skouteris, D., De Fazio, D., Aquilanti, V., Cavalli, S.: J. Phys. Chem. A 113, 14807–14812 (2009)

    Article  Google Scholar 

  11. Taylor, J.R.: Scattering Theory: the Quantum Theory of Non-relativistic collisions. Wiley, New York (1972)

    Google Scholar 

  12. Laganà, A.: Towards a Grid Based Universal Molecular Simulator. In: Laganà, A., Lendvay, G. (eds.) Theory of the Dynamics of Elementary Molecular Reactions, pp. 363–380. Kluwer, Dordrecht (2004)

    Google Scholar 

  13. Costantini, A., Gervasi, O., Manuali, C., Faginas Lago, N., Rampino, S., Laganà, A.: Journal of Grid Computing 8, 571–586 (2010)

    Article  Google Scholar 

  14. Laganá, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry virtual organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Computational Chemistry (COMPCHEM) Virtual Organization, http://www.compchem.unipg.it

  16. Gervasi, O., Laganà, A.: Future Generations of Computer Systems 20, 703–715 (2004)

    Article  Google Scholar 

  17. Rampino, S., Monari, A., Evangelisti, S., Rossi, E., Ruud, K., Laganà, A.: A priori modeling of chemical reactions on a grid-based virtual laboratory. In: Cracow 2009 Grid Workshop, pp. 164–171 (2010)

    Google Scholar 

  18. Garcia, E., Saracibar, A., Laganà, A.: Theor. Chem. Acc. 128, 727–734 (2011)

    Article  Google Scholar 

  19. Alagia, M., Balucani, N., Casavecchia, P., Stranges, D., Volpi, G.G.: J. Chem. Phys. 98, 8341–8344 (1993)

    Article  Google Scholar 

  20. Alagia, M., Balucani, N., Casavecchia, P., Stranges, D., Volpi, G.G.: J. Chem. Soc. Faraday Trans. 91, 575–596 (1995)

    Google Scholar 

  21. Garcia, E., Saracibar, A., Zuazo, L., Laganà, A.: Chem. Phys. 332, 162–175 (2007)

    Article  Google Scholar 

  22. Sun, H.Y., Law, C.K.J.: Mol. Struc. – THEOCHEM 862, 138–147 (2008)

    Article  Google Scholar 

  23. Bowman, J.M., Schatz, G.C.: Annu. Rev. Phys. Chem. 46, 169–195 (1995)

    Article  Google Scholar 

  24. Kudla, K., Schatz, G.C.: In: Liu, K., Wagner, A. (eds.) The Chemical Dynamics and Kinetics of Small Radicals, pp. 438–465. World Scientific, Singapore (1995)

    Google Scholar 

  25. Clary, D.C., Schatz, G.C.: J. Chem. Phys. 99, 4578–4589 (1993)

    Article  Google Scholar 

  26. Hernández, M.I., Clary, D.C.: J. Chem. Phys. 101, 2779–2784 (1994)

    Article  Google Scholar 

  27. Goldfield, E.M., Gray, S.K., Schatz, G.C.: J. Chem. Phys. 102, 8807–8817 (1995)

    Article  Google Scholar 

  28. Yu, H.G., Muckerman, J.T., Sears, T.J.: Chem. Phys. Lett. 349, 547–554 (2001)

    Article  Google Scholar 

  29. Lakin, M.J., Troya, D., Schatz, G.C., Harding, L.B.: J. Chem. Phys. 119, 5848–5859 (2003)

    Article  Google Scholar 

  30. Valero, R., van Hemert, M.C., Kroes, G.J.: Chem. Phys. Lett. 393, 236–244 (2004)

    Article  Google Scholar 

  31. Zhang, D.H., Zhang, J.Z.H.: J. Chem. Phys. 103, 6512–6519 (1995)

    Article  Google Scholar 

  32. Balakrishnan, N., Billing, G.D.: J. Chem. Phys. 104, 4005–4011 (1996)

    Article  Google Scholar 

  33. Dzegilenko, F.N., Bowman, J.M.: J. Chem. Phys. 108, 511–518 (1998)

    Article  Google Scholar 

  34. Billing, G.D., Muckerman, J.T., Yu, H.G.: J. Chem. Phys. 117, 4755–4760 (2002)

    Article  Google Scholar 

  35. Valero, R., Kroes, G.J.: J. Chem. Phys. 117, 8736–8744 (2002)

    Article  Google Scholar 

  36. McCormack, D.A., Kroes, G.J.: Chem. Phys. Lett. 352, 281–287 (2002); Erratum, ibid 373, 648–649 (2003)

    Article  Google Scholar 

  37. Medvedev, D.M., Gray, S.K., Goldfield, E.M., Lakin, M.J., Troya, D., Schatz, G.C.: J. Chem. Phys. 120, 1231–1238 (2004)

    Article  Google Scholar 

  38. He, Y., Goldfield, E.M., Gray, S.K.: J. Chem. Phys. 121, 823–828 (2004)

    Article  Google Scholar 

  39. Valero, R., McCormack, D.A., Kroes, G.J.: J. Chem. Phys. 120, 4263–4272 (2004)

    Article  Google Scholar 

  40. Valero, R., Kroes, G.J.: Phys. Rev. A 70, 040701 (2004)

    Article  Google Scholar 

  41. Valero, R., Kroes, G.J.: J. Phys. Chem. A 108, 8672–8681 (2004)

    Article  Google Scholar 

  42. Valero, R., Kroes, G.J.: Chem. Phys. Lett. 417, 43–47 (2006)

    Article  Google Scholar 

  43. Zhang, S., Medvedev, D.M., Goldfield, E.M., Gray, S.K.: J. Chem. Phys. 125, 164–312 (2006)

    Google Scholar 

  44. Song, X., Li, J., Hou, H., Wang, B.: J. Chem. Phys. 125, 094301 (2006)

    Article  Google Scholar 

  45. Murrell, J.N., Carter, S., Farantos, S.C., Huxley, P., Varandas, A.J.C.: Molecular Potential Energy Functions. Wiley, Chichester (1984)

    Google Scholar 

  46. Yang, M., Zhang, D.H., Collins, M.A., Lee, S.Y.: J. Chem. Phys. 115, 174–178 (2001)

    Article  Google Scholar 

  47. Hase, W.L., Duchovic, R.J., Hu, X., Komornicki, A., Lim, K.F., Lu, D., Peslherbe, G.H., Swamy, K.N., Van de Linde, S.R., Varandas, A.J.C., Wang, H., Wolf, R.J.: QCPE Bull. 16, 43–53 (1996)

    Google Scholar 

  48. Alagia, M., Aquilanti, V., Ascenzi, D., Balucani, N., Cappelletti, D., Cartechini, L., Casavecchia, P., Pirani, F., Sanchini, G., Volpi, G.G.: Israel J. Chem. 37, 329–342 (1997)

    Article  Google Scholar 

  49. Leonori, F., Petrucci, R., Hickson, K.H., Segoloni, E., Balucani, N., Le Picard, S., Foggi, P., Casavecchia, P.: Planet. Space Sci. 56, 1658–1673 (2008)

    Article  Google Scholar 

  50. Leonori, F., Hickson, K.H., Le Picard, S., Wang, X., Petrucci, R., Foggi, P., Balucani, N., Casavecchia, P.: Mol. Phys. 108, 1097–1113 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laganá, A., Balucani, N., Crocchianti, S., Casavecchia, P., Garcia, E., Saracibar, A. (2011). An Extension of the Molecular Simulator GEMS to Calculate the Signal of Crossed Beam Experiments. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21931-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21930-6

  • Online ISBN: 978-3-642-21931-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics