Skip to main content

A Framework for Integrated Software Quality Prediction Using Bayesian Nets

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6786))

Included in the following conference series:

Abstract

The aim of this study is to develop a framework for integrated software quality prediction. This integration is reflected by a range of quality attributes incorporated in the model as well as relationships between these attributes. The model is formulated as a Bayesian net, a technique that has already been used in various software engineering studies. The framework enables to incorporate expert knowledge about the domain as well as related empirical data and encode them in the Bayesian net model. Such model may be used in decision support for software analysts and managers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abouelela, M., Benedicenti, L.: Bayesian Network Based XP Process Modelling. Int. J. Softw. Eng. Appl. 1, 1–15 (2010)

    Google Scholar 

  2. AgenaRisk BN Tool, Agena (2009), http://www.agenarisk.com

  3. Akiyama, F.: An Example of Software System Debugging, In: Federation for Information Processing Congress, Ljubljana, vol. 71, pp. 353–379 (1971)

    Google Scholar 

  4. Alvaro, A., Santana De Almeida, E., Romero De Lemos Meira, S.: A software component quality framework. SIGSOFT Softw. Eng. Not. 35, 1–18 (2010)

    Article  Google Scholar 

  5. Beaver, J.M.: A life cycle software quality model using bayesian belief networks, Doctoral Dissertation, University of Central Florida Orlando, FL (2006)

    Google Scholar 

  6. Côté, M.-A., Suryn, W., Georgiadou, E.: In search for a widely applicable and accepted software quality model for software quality engineering. Softw. Qual. J. 15, 401–416 (2007)

    Article  Google Scholar 

  7. Fenton, N., Hearty, P., Neil, M., Radliński, Ł.: Software Project and Quality Modelling Using Bayesian Networks. In: Meziane, F., Vadera, S. (eds.) Artificial Intelligence Applications for Improved Software Engineering Development: New Prospects, pp. 1–25. Information Science Reference, New York (2008)

    Google Scholar 

  8. Fenton, N., Marsh, W., Neil, M., Cates, P., Forey, S., Tailor, M.: Making Resource Decisions for Software Projects. In: 26th Int. Conference on Software Engineering, Washington DC, pp. 397–406 (2004)

    Google Scholar 

  9. Fenton, N., Neil, M., Marsh, W., Hearty, P., Radliński, Ł., Krause, P.: On the effectiveness of early life cycle defect prediction with Bayesian Nets. Empir. Softw. Eng. 13, 499–537 (2008)

    Article  Google Scholar 

  10. Fenton, N.E., Neil, M., Caballero, J.G.: Using Ranked Nodes to Model Qualitative Judgments in Bayesian Networks. IEEE Trans Knowl. Data Eng. 19, 1420–1432 (2007)

    Article  Google Scholar 

  11. ISO/IEC 25000:2005, Software Engineering – Software product Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE (2005)

    Google Scholar 

  12. ISO/IEC FDIS 25010:2011, Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – System and software quality models (2011)

    Google Scholar 

  13. ISO/IEC FDIS 9126-1:2001, Software Engineering – Product quality – Part 1: Quality model (2001)

    Google Scholar 

  14. ISO/IEC TR 9126-2:2003, Software engineering – Product quality – Part 2: External metrics (2003)

    Google Scholar 

  15. ISO/IEC TR 9126-3:2003, Software engineering – Product quality – Part 3: Internal metrics (2003)

    Google Scholar 

  16. ISO/IEC TR 9126-4:2004, Software Engineering – Product quality – Part 4: Quality in use metrics (2004)

    Google Scholar 

  17. Jarvis, A., Crandall, V.: Inroads to Software Quality: “How to” Guide and Toolkit. Prentice Hall PTR, Upper Saddle River (1997)

    Google Scholar 

  18. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  19. Jones, C.: Applied Software Measurement: Global Analysis of Productivity and Quality, 3rd edn. McGraw-Hill, New York (2008)

    Google Scholar 

  20. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley, Boston (2003)

    MATH  Google Scholar 

  21. Kjærulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams. A Guide to Construction and Analysis. Springer, New York (2008)

    Book  MATH  Google Scholar 

  22. Lyu, M.: Handbook of software reliability engineering. McGraw-Hill, Hightstown (1996)

    Google Scholar 

  23. Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., Webster, S.: An investigation of machine learning based prediction systems. J. Syst. Softw. 53, 23–29 (2000)

    Article  Google Scholar 

  24. Musa, J.D.: Software Reliability Engineering: More Reliable Software Faster and Cheaper, 2nd edn. Author house, Boston (2004)

    Google Scholar 

  25. O’Regan, G.: A Practical Approach to Software Quality. Springer, New York (2002)

    Book  MATH  Google Scholar 

  26. Ortega, M., Perez, M., Rojas, T.: Construction of a Systemic Quality Model for Evaluating a Software Product. Softw. Qual. J. 11, 219–242 (2003)

    Article  Google Scholar 

  27. Pfautz, J., Koelle, D., Carlson, E., Roth, E.: Complexities and Challenges in the Use of Bayesian Belief Networks: Informing the Design of Causal Influence Models. In: Human Factors and Ergonomics Society 53rd Annual Meeting, San Antonio, pp. 237–241 (2009)

    Google Scholar 

  28. Radliński, Ł., Fenton, N., Neil, M., Marquez, D.: Improved Decision-Making for Software Managers Using Bayesian Networks. In: 11th IASTED Int. Conf. Software Engineering and Applications, pp. 13–19. IASTED, Cambridge (2007)

    Google Scholar 

  29. Radlinski, L., Hoffmann, W.: On Predicting Software Development Effort using Machine Learning Techniques and Local Data. Int. J. Softw. Eng. Comput. 2, 123–136 (2010)

    Google Scholar 

  30. Radlinski, L.: A Survey of Bayesian Net Models for Software Development Effort Prediction. Int. J. Softw. Eng. Comput. 2, 95–109 (2010)

    Google Scholar 

  31. Radliński, Ł.: BaNISoQ: Bayesian Net Model for Integrated Software Quality Prediction (2010), http://lukrad.univ.szczecin.pl/projects/banisoq/

  32. Rosqvist, T., Koskela, M., Harju, H.: Software Quality Evaluation Based on Expert Judgement. Softw. Qual. J. 11, 39–55 (2003)

    Article  Google Scholar 

  33. Rubey, R.J., Hartwick, R.D.: Quantitative measurement of program quality. In: ACM National Conference, pp. 671–677. ACM, New York (1968)

    Google Scholar 

  34. Schneidewind, N.F.: An approach to software reliability prediction and quality control. In: Proc. of the American Federation of Information Processing Societies, pp. 337–347. ACM, New York (1972)

    Google Scholar 

  35. Schulmeyer, G.G., McManus, J.I. (eds.): Handbook of Software Quality Assurance. Prentice Hall PTR, Upper Saddle River (1999)

    Google Scholar 

  36. Van Koten, C., Gray, A.R.: An application of Bayesian network for predicting object-oriented software maintainability. Inf. Softw. Technol. 48, 59–67 (2006)

    Article  Google Scholar 

  37. Villalba, M.T., Fernández-Sanz, L., Martínez, J.J.: Empirical support for the generation of domain-oriented quality models. IET Softw. 4, 1–14 (2010)

    Article  Google Scholar 

  38. Wagner, S.: A Bayesian network approach to assess and predict software quality using activity-based quality models. In: 5th Int. Conf. on Predictor Models in Software Engineering. ACM Press, New York (2009)

    Google Scholar 

  39. Zhang, D., Tsai, J.J.P.: Machine Learning and Software Engineering. Softw. Qual. J. 11, 87–119 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Radliński, Ł. (2011). A Framework for Integrated Software Quality Prediction Using Bayesian Nets. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6786. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21934-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21934-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21933-7

  • Online ISBN: 978-3-642-21934-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics