Abstract
We describe a hashing function from the elements of the finite field \(\mathbb{F}_q\) into points on a Hessian curve. Our function features the uniform and smaller size for the cardinalities of almost all fibers compared with the other known hashing functions for elliptic curves. For ordinary Hessian curves, this function is 2 : 1 for almost all points. More precisely, for odd q, the cardinality of the image set of the function is exactly given by (q + i + 2)/2 for some i = − 1,1.
Next, we present an injective hashing function from the elements of ℤ m into points on a Hessian curve over \(\mathbb{F}_q\) with odd q and m = (q + i)/2 for some i = − 1,1,3.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Bernstein, D.J., Lange, T.: Explicit-formulas database, http://www.hyperelliptic.org/EFD/
Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)
Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010)
Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Advances in Applied Mathematics 7(4), 385–434 (1986)
Dalen, K.: On a theorem of Stickelberger. Math. Scand. 3, 124–126 (1955)
Farashahi, R.R., Fouque, P.-A., Shparlinski, I., Tibouchi, M., Voloch, F.: Indifferentiable deterministic hashing to elliptic and hyperelliptic curves. Cryptology ePrint Archive, Report 2010/539 (2010), http://eprint.iacr.org/2010/539
Farashahi, R.R., Joye, M.: Efficient Arithmetic on Hessian Curves. In: Nguyen, P., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 243–260. Springer, Heidelberg (2010)
Farashahi, R.R., Shparlinski, I., Voloch, F.: On hashing into elliptic curves. J. Math. Cryptology 3, 353–360 (2009)
Fouque, P.-A., Tibouchi, M.: Estimating the size of the image of deterministic hash functions to elliptic curves. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 81–91. Springer, Heidelberg (2010)
Fouque, P.-A., Tibouchi, M.: Deterministic encoding and hashing to odd hyperelliptic curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 265–277. Springer, Heidelberg (2010)
Hesse, O.: Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. Journal Für Die Reine und Angewandte Mathematik 10, 68–96 (1844)
Hisil, H., Carter, G., Dawson, E.: New formulæ for efficient elliptic curve arithmetic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 138–151. Springer, Heidelberg (2007)
Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Faster group operations on elliptic curves. In: Brankovic, L., Susilo, W. (eds.) AISC 2009, vol. 98, pp. 7–19 (2009)
Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)
Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev. 26(5), 5–26 (1996)
Joye, M., Quisquater, J.-J.: Hessian elliptic curves and side-channel attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–410. Springer, Heidelberg (2001)
Kammerer, J.-G., Lercier, R., Renault, G.: Encoding points on hyperelliptic curves over finite fields in deterministic polynomial time. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 278–297. Springer, Heidelberg (2010)
Lidl, R., Niederreiter, H.: Finite fields. Cambridge University Press, Cambridge (1997)
Shallue, A., van de Woestijne, C.: Construction of rational points on elliptic curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006)
Smart, N.P.: The hessian form of an elliptic curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg (2001)
Stickelberger, L.: Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper. In: Verh. 1 Internat. Math. Kongresses, Zürich, Leipzig, pp. 182–193 (1897)
Swan, R.G.: Factorization of Polynomials over Finite Fields. Pac. J. Math. 19, 1099–1106 (1962)
Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. Bull. Polish Acad. Sci. Math. 55(2), 97–104 (2007)
Vishne, U.: Factorization of Trinomials over Galois Fields of Characteristic 2. Finite Fields and Their Applications 3, 370–377 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Farashahi, R.R. (2011). Hashing into Hessian Curves. In: Nitaj, A., Pointcheval, D. (eds) Progress in Cryptology – AFRICACRYPT 2011. AFRICACRYPT 2011. Lecture Notes in Computer Science, vol 6737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21969-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-21969-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21968-9
Online ISBN: 978-3-642-21969-6
eBook Packages: Computer ScienceComputer Science (R0)