Skip to main content

The NIST SHA-3 Competition: A Perspective on the Final Year

  • Conference paper
Progress in Cryptology – AFRICACRYPT 2011 (AFRICACRYPT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6737))

Included in the following conference series:

Abstract

Cryptographic hash functions map input strings of arbitrary length to fixed length output strings. They are expected to satisfy several security properties that include preimage resistance, second preimage resistance, and collision resistance. The free availability of efficient software-oriented hash functions such as MD4, MD5 and SHA-1 has resulted in a very broad deployment of hash functions, way beyond their initial design purposes. In spite of the importance for applications, until 2005 the amount of theoretical research and cryptanalysis invested in this topic was rather limited. Moreover, cryptanalysts had been winning the battle from designers: about 4 of every 5 designs were broken. In 2004 Wang et al. made a breakthrough in the cryptanalysis of MD4, MD5 and SHA-1. Around the same time, serious shortcomings were identified in the theoretical foundations of existing designs. In response to this hash function crisis, in the last five years a substantial number of papers has been published with theoretical results and novel designs. Moreover, NIST announced in November 2007 the start of the SHA-3 competition, with as goal to select a new hash function family by 2012. We present a brief outline of the state of the art of hash functions in the last year of the competition and attempt to identify the lessons learned and some open research problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andreeva, E., Mennink, B., Preneel, B.: Security reductions of the second round SHA-3 candidates. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 39–53. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Andreeva, E., Mennink, B., Preneel, B.: The parazoa family: generalizing the sponge hash functions. Cryptology ePrint Archive: Report 2011/028, 14 January (2011)

    Google Scholar 

  3. Bellare, M.: New proofs for NMAC and HMAC: security without collision resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)

    Google Scholar 

  5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK sponge function family (2009), submission to the NIST SHA-3 competition

    Google Scholar 

  7. Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

    Google Scholar 

  8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Information Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dobbertin, H.: Cryptanalysis of MD4. J. Cryptology 11, 253–271 (1998); See also in Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

    Google Scholar 

  10. Dobbertin, H.: The status of MD5 after a recent attack. CryptoBytes 2, 1–6 (1996)

    Google Scholar 

  11. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  12. FIPS 180-1, Secure Hash Standard. Federal Information Processing Standard (FIPS), Publication 180-1, National Institute of Standards and Technology, US Department of Commerce, Washington D.C., April 17 (1995)

    Google Scholar 

  13. FIPS 180-2, Secure Hash Standard. Federal Information Processing Standard (FIPS), Publication 180-2, National Institute of Standards and Technology, US Department of Commerce, Washington D.C., August 26 (2002) (Change notice 1 published on December 1, 2003)

    Google Scholar 

  14. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound distinguishers: Results on the full Whirlpool compression function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

    Google Scholar 

  16. NIST SHA-3 Competition, http://csrc.nist.gov/groups/ST/hash/

  17. Pal, P., Sarkar, P.: PARSHA-256 – A new parallelizable hash function and a multithreaded implementation. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 347–361. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Preneel, B.: Analysis and design of cryptographic hash functions Doctoral Dissertation, Katholieke Universiteit Leuven (1993)

    Google Scholar 

  19. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)

    Google Scholar 

  20. Rivest, R.L.: The MD5 message-digest algorithm. Request for Comments (RFC) 1321, Internet Activities Board, Internet Privacy Task Force (April 1992)

    Google Scholar 

  21. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Preneel, B. (2011). The NIST SHA-3 Competition: A Perspective on the Final Year. In: Nitaj, A., Pointcheval, D. (eds) Progress in Cryptology – AFRICACRYPT 2011. AFRICACRYPT 2011. Lecture Notes in Computer Science, vol 6737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21969-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21969-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21968-9

  • Online ISBN: 978-3-642-21969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics