Abstract
We propose a generic way for deriving an identification (ID) scheme secure against concurrent man-in-the-middle attacks from a key encapsulation mechanism (KEM) secure against chosen ciphertext attacks on one-wayness (one-way-CCA). Then we give a concrete one-way-CCA secure KEM based on the Computational Diffie-Hellman (CDH) assumption. In that construction, the Twin Diffie-Hellman technique of Cash, Kiltz and Shoup is essentially employed. We compare efficiency of the ID scheme derived from our KEM with previously known ID schemes and KEMs. It turns out that our KEM-based ID scheme reduces the computation by one exponentiation than the currently most efficient one derived from the Hanaoka-Kurosawa one-way-CCA secure KEM, whose security is based on the same (CDH) assumption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anada, H., Arita, S.: Identification Schemes of Proofs of Ability Secure against Concurrent Man-in-the-Middle Attacks. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 18–34. Springer, Heidelberg (2010)
Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)
Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification Protocols Secure against Reset Attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 495–511. Springer, Heidelberg (2001)
Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)
Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)
Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008), http://eprint.iacr.org/
Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)
Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)
Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on Computing 33(1), 167–226 (2003)
Fujisaki, E.: New Constructions of Efficient Simulation-Sound Commitments Using Encryption. In: The 2011 Symposium on Cryptography and Information Security, 1A2-3. The Institute of Electronics, Information and Communication Engineers, Tokyo (2011)
Gennaro, R.: Multi-trapdoor Commitments and their Applications to Non-Malleable Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004)
Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof Systems. SIAM Journal on Computing 18(1), 186–208 (1989)
Guillou, L., Quisquater, J.J.: A Paradoxical Identity-Based Signature Scheme Resulting from Zero-Knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, Heidelberg (1990)
Herranz, J., Hofheinz, D., Kiltz, E.: The Kurosawa-Desmedt Key Encapsulation is not Chosen-Ciphertext Secure. Cryptology ePrint Archive, 2006/207, http://eprint.iacr.org/
Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key Encryption under the Computational Diffie-Hellman Assumption. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008), Full version available at Cryptology eprint Archive, http://eprint.iacr.org/
Katz, J.: Efficient Cryptographic Protocols Preventing “Man-in-the-Middle” Attacks. Doctor of Philosophy Dissertation. Columbia University, New York (2002)
Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)
Kiltz, E.: Personal communication at ProvSec 2010, Malacca (2010)
Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin, M. K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)
Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In: The 21st Symposium on Theory of Computing, pp. 33–43. Association for Computing Machinery, New York (1989)
Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)
Pointcheval, D.: Chosen-Ciphertext Security for Any One-Way Cryptosystem. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 129–146. Springer, Heidelberg (2000)
Rompel, J.: One-Way Functions are Necessary and Sufficient for Secure Signatures. In: The 22nd Annual Symposium on Theory of Computing, pp. 384–387. Association for Computing Machinery, New York (1990)
Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)
Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext Attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)
Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)
Yilek, S.: Resettable Public-Key Encryption: How to Encrypt on a Virtual Machine. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 41–56. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Anada, H., Arita, S. (2011). Identification Schemes from Key Encapsulation Mechanisms. In: Nitaj, A., Pointcheval, D. (eds) Progress in Cryptology – AFRICACRYPT 2011. AFRICACRYPT 2011. Lecture Notes in Computer Science, vol 6737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21969-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-21969-6_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21968-9
Online ISBN: 978-3-642-21969-6
eBook Packages: Computer ScienceComputer Science (R0)