Skip to main content

Pairwise-Interaction Games

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

We study the complexity of computing Nash equilibria in games where players arranged as the vertices of a graph play a symmetric 2-player game against their neighbours. We call this a pairwise-interaction game. We analyse this game for n players with a fixed number of actions and show that (1) a mixed Nash equilibrium can be computed in constant time for any game, (2) a pure Nash equilibrium can be computed through Nash dynamics in polynomial time for games with a symmetrisable payoff matrix, (3) determining whether a pure Nash equilibrium exists for zero-sum games is NP-complete, and (4) counting pure Nash equilibria is #P-complete even for 2-strategy games. In proving (3), we define a new defective graph colouring problem called Nash colouring, which is of independent interest, and prove that its decision version is NP-complete. Finally, we show that pairwise-interaction games form a proper subclass of the usual graphical games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, H., Roglin, H., Vocking, B.: On the impact of combinatorial structure on congestion games. In: Proceedings of the 47th IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 613–622 (2006)

    Google Scholar 

  2. Àlvarez, C., Gabarró, J., Serna, M.: Pure Nash equilibria in games with a large number of actions. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 95–106. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Berninghaus, S.K., Haller, H.: Pairwise interaction on random graphs, Tech. Report 06–16, Sonderforschungsbereich 504, University of Mannheim (February 2007)

    Google Scholar 

  4. Bhalgat, A., Chakraborty, T., Khanna, S.: Approximating pure Nash equilibrium in cut, party affiliation, and satisfiability games. In: Proceedings of the 11th ACM Conference on Electronic Commerce (EC 2010), pp. 73–82 (2010)

    Google Scholar 

  5. Brandt, F., Fischer, F., Holzer, M.: Equilibria of graphical games with symmetries. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 198–209. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Brandt, F., Fischer, F., Holzer, M.: Symmetries and the complexity of pure Nash equilibrium. Journal of Computer and System Sciences 75, 163–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: Proceedings of the 47th IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 261–272 (2006)

    Google Scholar 

  8. Cheng, S., Reeves, D.M., Vorobeychik, Y., Wellman, M.P.: Notes on the equilibria in symmetric games. In: Proceedings of the 6th International Workshop on Game Theoretic and Decision Theoretic Agents (GTDT 2004), pp. 71–78 (2004)

    Google Scholar 

  9. Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games and Economic Behavior 63, 621–641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowen, L.J., Goddard, W., Jesurum, C.E.: Defective coloring revisited. J. Graph Theory 24, 205–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. Commun. ACM 52, 89–97 (2009)

    Article  MATH  Google Scholar 

  12. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC 2004), pp. 604–612 (2004)

    Google Scholar 

  13. Fischer, F., Holzer, M., Katzenbeisser, S.: The influence of neighbourhood and choice on the complexity of finding pure Nash equilibria. Information Processing Letters 99, 239–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games and Economic Behavior 1, 80–93 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halldórsson, M.M., Lau, H.C.: Low-degree graph partitioning via local search with applications to constraint satisfaction, max cut, and coloring. Journal of Graph Algorithms and Applications 1, 1–13 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  17. Kaplansky, I.: A contribution to von Neumann’s theory of games. The Annals of Mathematics 46, 474–479 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory, Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI 2001), pp. 253–260 (2001)

    Google Scholar 

  19. Leven, D., Galil, Z.: NP-completeness of finding the chromatic index of regular graphs. Journal of Algorithms 4, 35–44 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nash, J.: Non-cooperative games. The Annals of Mathematics 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Article  Google Scholar 

  23. Papadimitriou, C.H., Roughgarden, T.: Computing equilibria in multi-player games. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 82–91 (2005)

    Google Scholar 

  24. Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Graph topology plays a determinant role in the evolution of cooperation. Proceedings of the Royal Society B: Biological Sciences 273, 51–55 (2006)

    Article  Google Scholar 

  25. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20, 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dyer, M., Mohanaraj, V. (2011). Pairwise-Interaction Games. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics