Skip to main content

Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Model

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

We show time lower bounds for both online integer multiplication and convolution in the cell-probe model with word size w. For the multiplication problem, one pair of digits, each from one of two n digit numbers that are to be multiplied, is given as input at step i. The online algorithm outputs a single new digit from the product of the numbers before step i + 1. We give a lower bound of \(\Omega(\frac{\delta}{w} \log n)\) time on average per output digit for this problem where 2δ is the maximum value of a digit. In the convolution problem, we are given a fixed vector V of length n and we consider a stream in which numbers arrive one at a time. We output the inner product of V and the vector that consists of the last n numbers of the stream. We show an \(\Omega(\frac{\delta}{w}\log n)\) lower bound for the time required per new number in the stream. All the bounds presented hold under randomisation and amortisation. Multiplication and convolution are central problems in the study of algorithms which also have the widest range of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clifford, R., Efremenko, K., Porat, B., Porat, E.: A black box for online approximate pattern matching. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 143–151. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Clifford, R., Sach, B.: Pattern matching in pseudo real-time. Journal of Discrete Algorithms 9(1), 67–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Daykin, D.E.: Distribution of bordered persymmetric matrices in a finite field. Journal für die reine und angewandte Mathematik 203, 47–54 (1960)

    MathSciNet  MATH  Google Scholar 

  4. Fischer, M.J., Stockmeyer, L.J.: Fast on-line integer multiplication. In: STOC 1973: Proc. 5th Annual ACM Symposium Theory of Computing, pp. 67–72 (1973)

    Google Scholar 

  5. Fredman, M.L.: Observations on the complexity of generating quasi-gray codes. SIAM Journal on Computing 7(2), 134–146 (1978)

    Article  MathSciNet  Google Scholar 

  6. Fredman, M.L., Saks, M.: The cell probe complexity of dynamic data structures. In: STOC 1989: Proc. 21st Annual ACM Symposium Theory of Computing, pp. 345–354 (1989)

    Google Scholar 

  7. Galil, Z.: String matching in real time. Journal of the ACM 28(1), 134–149 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kaltofen, E., Lobo, A.: On rank properties of Toeplitz matrices over finite fields. In: ISSAC 1996: Proc. of the 1996 International Symposium on Symbolic and Algebraic Computation, pp. 241–249 (1996)

    Google Scholar 

  9. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)

    MATH  Google Scholar 

  10. Paterson, M.S., Fischer, M.J., Meyer, A.R.: An improved overlap argument for on-line multiplication. In: Proceedings of SIAM-AMS, vol. 7, pp. 97–111. Amer. Math. Soc., Providence (1974)

    Google Scholar 

  11. Pǎtraşcu, M.: Lower Bound Techniques for Data Structures. PhD thesis, Massachusetts Institute of Technology (2008)

    Google Scholar 

  12. Pǎtraşcu, M., Demaine, E.D.: Tight bounds for the partial-sums problem. In: SODA 2004: Proc. 15th ACM/SIAM Symposium on Discrete Algorithms, pp. 20–29 (2004)

    Google Scholar 

  13. Pătraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model. SIAM Journal on Computing 35(4), 932–963 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity. In: FOCS 1977: Proc. 18th Annual Symposium on Foundations of Computer Science, pp. 222–227 (1977)

    Google Scholar 

  15. Yao, A.C.-C.: Should tables be sorted? Journal of the ACM 28(3), 615–628 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clifford, R., Jalsenius, M. (2011). Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Model. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics