Abstract
For certain subclasses of NP, ⊕P or #P characterized by local constraints, it is known that if there exist any problems that are not polynomial time computable within that subclass, then those problems are NP-, ⊕P- or #P-complete. Such dichotomy results have been proved for characterizations such as Constraint Satisfaction Problems, and directed and undirected Graph Homomorphism Problems, often with additional restrictions. Here we give a dichotomy result for the more expressive framework of Holant Problems. These additionally allow for the expression of matching problems, which have had pivotal roles in complexity theory. As our main result we prove the dichotomy theorem that, for the class ⊕P, every set of boolean symmetric Holant signatures of any arities that is not polynomial time computable is ⊕P-complete. The result exploits some special properties of the class ⊕P and characterizes four distinct tractable subclasses within ⊕P. It leaves open the corresponding questions for NP, #P and # k P for k ≠ 2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arvind, V., Kurur, P.P.: Graph isomorphism is in spp. Inf. Comput. 204(5), 835–852 (2006)
Beigel, R., Buhrman, H., Fortnow, L.: Np might not be as easy as detecting unique solutions. In: STOC 1998: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 203–208 (1998)
Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120 (2006)
Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 646–661. Springer, Heidelberg (2008)
Cai, J.-Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A dichotomy theorem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 275–286. Springer, Heidelberg (2010)
Cai, J.Y., Huang, S., Lu, P.: From holant to #CSP and back: Dichotomy for holantc problems. arXiv 1004.0803 (2010)
Cai, J.Y., Lu, P.: Holographic algorithms: from art to science. In: STOC 2007: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 401–410. ACM, New York (2007)
Cai, J.-Y., Lu, P.: Signature theory in holographic algorithms. In: Hong, S.H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 568–579. Springer, Heidelberg (2008)
Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms by fibonacci gates and holographic reductions for hardness. In: FOCS 2008: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Washington, DC, USA (2008)
Cai, J.Y., Lu, P., Xia, M.: A computational proof of complexity of some restricted counting problems. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 138–149. Springer, Heidelberg (2009)
Cai, J.Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: Mitzenmacher, M. (ed.) STOC, pp. 715–724. ACM, New York (2009)
Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture precisely tractable planar #CSP. In: FOCS 2010: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 427–436 (2010)
Cook, M., Bruck, J.: Implementability among predicates. Tech. rep., California Institute of Technology (2005)
Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of boolean constraint satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications (2001)
Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inf. Comput. 125(1), 1–12 (1996)
Dodson, C.T.J., Poston, T.: Tensor Geometry. Graduate Texts in Mathematics, vol. 130. Springer, New York (1991)
Dyer, M.E., Goldberg, L.A., Jerrum, M.: The complexity of weighted boolean #CSP. SIAM J. Comput. 38(5), 1970–1986 (2009)
Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to directed acyclic graphs. J. ACM 54(6) (2007)
Faben, J.: The complexity of counting solutions to generalised satisfiability problems modulo k. CoRR abs/0809.1836 (2008)
Feder, T., Vardi, M.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28(1), 57–104 (1999)
Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs. In: Albers, S., Marion, J.Y. (eds.) STACS. LIPIcs, vol. 3, pp. 493–504. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)
Guo, H., Huang, S., Lu, P., Xia, M.: The complexity of weighted boolean #csp modulo k. In: Schwentick, T., Dürr, C. (eds.) STACS. LIPIcs, vol. 9, pp. 249–260. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)
Kowalczyk, M., Cai, J.Y.: Holant problems for regular graphs with complex edge functions. In: The Proceeding of STACS (2010)
Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1), 155–171 (1975)
Papadimitriou, C.H., Zachos, S.: Two remarks on the power of counting. In: Proceedings of the 6th GI-Conference on Theoretical Computer Science, pp. 269–276 (1982)
Schaefer, T.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, p. 226. ACM, New York (1978)
Toda, S., Ogiwara, M.: Counting classes are at least as hard as the polynomial-time hierarchy. SIAM J. Comput. 21(2), 316–328 (1992)
Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47(1), 85–93 (1986)
Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)
Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput. 31(4), 1229–1254 (2002)
Valiant, L.G.: Accidental algorthims. In: FOCS 2006: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 509–517. IEEE Computer Society Press, Washington, DC, USA (2006)
Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)
Valiant, L.G.: Some observations on holographic algorithms. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 577–590. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, H., Lu, P., Valiant, L.G. (2011). The Complexity of Symmetric Boolean Parity Holant Problems. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_60
Download citation
DOI: https://doi.org/10.1007/978-3-642-22006-7_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22005-0
Online ISBN: 978-3-642-22006-7
eBook Packages: Computer ScienceComputer Science (R0)