Skip to main content

The Complexity of Symmetric Boolean Parity Holant Problems

(Extended Abstract)

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

For certain subclasses of NP, ⊕P or #P characterized by local constraints, it is known that if there exist any problems that are not polynomial time computable within that subclass, then those problems are NP-, ⊕P- or #P-complete. Such dichotomy results have been proved for characterizations such as Constraint Satisfaction Problems, and directed and undirected Graph Homomorphism Problems, often with additional restrictions. Here we give a dichotomy result for the more expressive framework of Holant Problems. These additionally allow for the expression of matching problems, which have had pivotal roles in complexity theory. As our main result we prove the dichotomy theorem that, for the class ⊕P, every set of boolean symmetric Holant signatures of any arities that is not polynomial time computable is ⊕P-complete. The result exploits some special properties of the class ⊕P and characterizes four distinct tractable subclasses within ⊕P. It leaves open the corresponding questions for NP, #P and # k P for k ≠ 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arvind, V., Kurur, P.P.: Graph isomorphism is in spp. Inf. Comput. 204(5), 835–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beigel, R., Buhrman, H., Fortnow, L.: Np might not be as easy as detecting unique solutions. In: STOC 1998: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 203–208 (1998)

    Google Scholar 

  3. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 646–661. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Cai, J.-Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A dichotomy theorem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 275–286. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Cai, J.Y., Huang, S., Lu, P.: From holant to #CSP and back: Dichotomy for holantc problems. arXiv 1004.0803 (2010)

    Google Scholar 

  7. Cai, J.Y., Lu, P.: Holographic algorithms: from art to science. In: STOC 2007: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 401–410. ACM, New York (2007)

    Chapter  Google Scholar 

  8. Cai, J.-Y., Lu, P.: Signature theory in holographic algorithms. In: Hong, S.H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 568–579. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms by fibonacci gates and holographic reductions for hardness. In: FOCS 2008: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Washington, DC, USA (2008)

    Google Scholar 

  10. Cai, J.Y., Lu, P., Xia, M.: A computational proof of complexity of some restricted counting problems. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 138–149. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Cai, J.Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: Mitzenmacher, M. (ed.) STOC, pp. 715–724. ACM, New York (2009)

    Google Scholar 

  12. Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture precisely tractable planar #CSP. In: FOCS 2010: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 427–436 (2010)

    Google Scholar 

  13. Cook, M., Bruck, J.: Implementability among predicates. Tech. rep., California Institute of Technology (2005)

    Google Scholar 

  14. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of boolean constraint satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications (2001)

    Google Scholar 

  15. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inf. Comput. 125(1), 1–12 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dodson, C.T.J., Poston, T.: Tensor Geometry. Graduate Texts in Mathematics, vol. 130. Springer, New York (1991)

    MATH  Google Scholar 

  17. Dyer, M.E., Goldberg, L.A., Jerrum, M.: The complexity of weighted boolean #CSP. SIAM J. Comput. 38(5), 1970–1986 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to directed acyclic graphs. J. ACM 54(6) (2007)

    Google Scholar 

  19. Faben, J.: The complexity of counting solutions to generalised satisfiability problems modulo k. CoRR abs/0809.1836 (2008)

    Google Scholar 

  20. Feder, T., Vardi, M.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28(1), 57–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs. In: Albers, S., Marion, J.Y. (eds.) STACS. LIPIcs, vol. 3, pp. 493–504. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

    Google Scholar 

  22. Guo, H., Huang, S., Lu, P., Xia, M.: The complexity of weighted boolean #csp modulo k. In: Schwentick, T., Dürr, C. (eds.) STACS. LIPIcs, vol. 9, pp. 249–260. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  23. Kowalczyk, M., Cai, J.Y.: Holant problems for regular graphs with complex edge functions. In: The Proceeding of STACS (2010)

    Google Scholar 

  24. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1), 155–171 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Papadimitriou, C.H., Zachos, S.: Two remarks on the power of counting. In: Proceedings of the 6th GI-Conference on Theoretical Computer Science, pp. 269–276 (1982)

    Google Scholar 

  26. Schaefer, T.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, p. 226. ACM, New York (1978)

    Google Scholar 

  27. Toda, S., Ogiwara, M.: Counting classes are at least as hard as the polynomial-time hierarchy. SIAM J. Comput. 21(2), 316–328 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47(1), 85–93 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput. 31(4), 1229–1254 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Valiant, L.G.: Accidental algorthims. In: FOCS 2006: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 509–517. IEEE Computer Society Press, Washington, DC, USA (2006)

    Chapter  Google Scholar 

  32. Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Valiant, L.G.: Some observations on holographic algorithms. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 577–590. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, H., Lu, P., Valiant, L.G. (2011). The Complexity of Symmetric Boolean Parity Holant Problems. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics