Skip to main content

Clustering with Local Restrictions

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

  • 1705 Accesses

Abstract

We study a family of graph clustering problems where each cluster has to satisfy a certain local requirement. Formally, let μ be a function on the subsets of vertices of a graph G. In the (μ,p,q)-Partition problem, the task is to find a partition of the vertices into clusters where each cluster C satisfies the requirements that (1) at most q edges leave C and (2) μ(C) ≤ p. Our first result shows that if μ is an arbitrary polynomial-time computable monotone function, then (μ,p,q)-Partition can be solved in time n O(q), i.e., it is polynomial-time solvable for every fixed q. We study in detail three concrete functions μ (number of nonedges in the cluster, maximum number of non-neighbours a vertex has in the cluster, the number of vertices in the cluster), which correspond to natural clustering problems. For these functions, we show that (μ,p,q)-Partition can be solved in time 2O(p)·n O(1) and in randomized time 2O(q)·n O(1), i.e., the problem is fixed-parameter tractable parameterized by p or by q.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: STOC 2005, pp. 684–693 (2005)

    Google Scholar 

  2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–63 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)

    Google Scholar 

  7. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms (2001)

    Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  9. Heggernes, P., Lokshtanov, D., Nederlof, J., Paul, C., Telle, J.A.: Generalized graph clustering: Recognizing (o,q)-cluster graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 171–183. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Langston, M.A., Plaut, B.C.: On algorithmic applications of the immersion order: An overview of ongoing work presented at the third slovenian international conference on graph theory. Discrete Mathematics 182(1-3), 191–196 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lokshtanov, D., Marx, D.: Clustering with local restrictions. In: preparation, http://www.ii.uib.no/~daniello/papers/clusteringLocal.pdf

  12. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. To appear in STOC (2011)

    Google Scholar 

  14. Mathieu, C., Sankur, O., Schudy, W.: Online correlation clustering. In: STACS, pp. 573–584 (2010)

    Google Scholar 

  15. Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: SODA, pp. 712–728 (2010)

    Google Scholar 

  16. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS, pp. 182–191 (1995)

    Google Scholar 

  17. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 551–562. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lokshtanov, D., Marx, D. (2011). Clustering with Local Restrictions. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics