Abstract
We study a family of graph clustering problems where each cluster has to satisfy a certain local requirement. Formally, let μ be a function on the subsets of vertices of a graph G. In the (μ,p,q)-Partition problem, the task is to find a partition of the vertices into clusters where each cluster C satisfies the requirements that (1) at most q edges leave C and (2) μ(C) ≤ p. Our first result shows that if μ is an arbitrary polynomial-time computable monotone function, then (μ,p,q)-Partition can be solved in time n O(q), i.e., it is polynomial-time solvable for every fixed q. We study in detail three concrete functions μ (number of nonedges in the cluster, maximum number of non-neighbours a vertex has in the cluster, the number of vertices in the cluster), which correspond to natural clustering problems. For these functions, we show that (μ,p,q)-Partition can be solved in time 2O(p)·n O(1) and in randomized time 2O(q)·n O(1), i.e., the problem is fixed-parameter tractable parameterized by p or by q.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: STOC 2005, pp. 684–693 (2005)
Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-3), 89–113 (2004)
Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–63 (1962)
Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)
Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)
Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms (2001)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Heggernes, P., Lokshtanov, D., Nederlof, J., Paul, C., Telle, J.A.: Generalized graph clustering: Recognizing (o,q)-cluster graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 171–183. Springer, Heidelberg (2010)
Langston, M.A., Plaut, B.C.: On algorithmic applications of the immersion order: An overview of ongoing work presented at the third slovenian international conference on graph theory. Discrete Mathematics 182(1-3), 191–196 (1998)
Lokshtanov, D., Marx, D.: Clustering with local restrictions. In: preparation, http://www.ii.uib.no/~daniello/papers/clusteringLocal.pdf
Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006)
Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. To appear in STOC (2011)
Mathieu, C., Sankur, O., Schudy, W.: Online correlation clustering. In: STACS, pp. 573–584 (2010)
Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: SODA, pp. 712–728 (2010)
Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS, pp. 182–191 (1995)
Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 551–562. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lokshtanov, D., Marx, D. (2011). Clustering with Local Restrictions. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_66
Download citation
DOI: https://doi.org/10.1007/978-3-642-22006-7_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22005-0
Online ISBN: 978-3-642-22006-7
eBook Packages: Computer ScienceComputer Science (R0)