Skip to main content

Limitations on Quantum Dimensionality Reduction

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

The Johnson-Lindenstrauss Lemma is a classic result which implies that any set of n real vectors can be compressed to O(logn) dimensions while only distorting pairwise Euclidean distances by a constant factor. Here we consider potential extensions of this result to the compression of quantum states. We show that, by contrast with the classical case, there does not exist any distribution over quantum channels that significantly reduces the dimension of quantum states while preserving the 2-norm distance with high probability. We discuss two tasks for which the 2-norm distance is indeed the correct figure of merit. In the case of the trace norm, we show that the dimension of low-rank mixed states can be reduced by up to a square root, but that essentially no dimensionality reduction is possible for highly mixed states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aaronson, S.: Limitations of quantum advice and one-way communication. Theory of Computing 1, 1–28 (2004), quant-ph/0402095

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quantum world. In: Proc. 22nd Annual IEEE Conf. Computational Complexity, pp. 129–140 (2007), quant-ph/0701126

    Google Scholar 

  3. Aubrun, G., Szarek, S., Werner, E.: Hastings’ additivity counterexample via Dvoretzky’s theorem (2010), arXiv:1003.4925

    Google Scholar 

  4. Aubrun, G., Szarek, S., Werner, E.: Non-additivity of Renyi entropy and Dvoretzky’s theorem. J. Math. Phys. 51, 022102 (2010), arXiv:0910.1189

    Article  MATH  Google Scholar 

  5. Bartlett, S., Rudolph, T., Spekkens, R.: Classical and quantum communication without a shared reference frame. Phys. Rev. Lett. 91(2), 027901 (2003), quant-ph/0302111

    Article  Google Scholar 

  6. Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in ℓ1. J. ACM 52(5), 766–788 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001), quant-ph/0102001

    Article  Google Scholar 

  8. Charikar, M., Sahai, A.: Dimension reduction in the ℓ1 norm. In: Proc. 43rd Annual Symp. Foundations of Computer Science, pp. 551–560 (2002)

    Google Scholar 

  9. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proc. 19th Annual IEEE Conf. Computational Complexity, pp. 236–249 (2004), quant-ph/0404076

    Google Scholar 

  10. Fawzi, O., Hayden, P., Sen, P.: From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking (2010), arXiv:1010.3007

    Google Scholar 

  11. Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fingerprinting. In: Proc. 21st Annual IEEE Conf. Computational Complexity, pp. 288–298 (2006), quant-ph/0603173

    Google Scholar 

  12. Harrow, A.W., Montanaro, A., Short, A.J.: Limitations on quantum dimensionality reduction (2010), arXiv:1012.2262

    Google Scholar 

  13. Hayden, P., Winter, A.: The fidelity alternative and quantum measurement simulation (2010), arXiv:1003.4994

    Google Scholar 

  14. Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: Proc. 42nd Annual Symp. Foundations of Computer Science, pp. 10–33 (2001)

    Google Scholar 

  15. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proc. 30th Annual ACM Symp. Theory of Computing, pp. 604–613 (1998)

    Google Scholar 

  16. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics 26, 189–206 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  18. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest neighbor in high dimensional spaces. In: Proc. 30th Annual ACM Symp. Theory of Computing, pp. 614–623 (1998)

    Google Scholar 

  19. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Comm. Math. Phys. 291(3), 813–843 (2009), arXiv:0810.2327

    Article  MathSciNet  MATH  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem. In: Proc. 21st Annual IEEE Conf. Computational Complexity, p. 287 (2006), quant-ph/0512085

    Google Scholar 

  22. Watrous, J.: Theory of quantum information lecture notes (2008), http://www.cs.uwaterloo.ca/~watrous/quant-info/

  23. Winter, A.: Quantum and classical message identification via quantum channels. In: Hirota, O. (ed.) Festschrift “A S Holevo 60”, pp. 171–188 (2004), quant-ph/0401060

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrow, A.W., Montanaro, A., Short, A.J. (2011). Limitations on Quantum Dimensionality Reduction. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics