Skip to main content

Automata-Based CSL Model Checking

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6756))

Included in the following conference series:

Abstract

For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. The presented decision procedure, however, has exponential complexity. In this paper, we propose an effective approximation algorithm for full CSL.

The key to our method is the notion of stratified CTMCs with respect to the CSL property to be checked. We present a measure-preservation theorem allowing us to reduce the problem to a transient analysis on stratified CTMCs. The corresponding probability can then be approximated in polynomial time (using uniformization). This makes the present work the centerpiece of a broadly applicable full CSL model checker.

Recently, the decision algorithm by Aziz et al. was shown to be incorrect in general. In fact, it works only for stratified CTMCs. As an additional contribution, our measure-preservation theorem can be used to ensure the decidability for general CTMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continous-time Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

    Article  MathSciNet  Google Scholar 

  3. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking Markov chains with actions and state labels. IEEE Trans. Softw. Eng. 33(4), 209–224 (2007)

    Article  Google Scholar 

  4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

    Article  MATH  Google Scholar 

  5. Ballarini, P., Mardare, R., Mura, I.: Analysing biochemical oscillation through probabilistic model checking. Electr. Notes Theor. Comp. Sc. 229(1), 3–19 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Quantitative model checking of continuous-time Markov chains against timed automata specifications. In: Twenty-fourth Annual IEEE Symposium on Logic in Computer Science, pp. 309–318. IEEE Comp. Soc., Los Alamitos (2009)

    Google Scholar 

  7. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSLTA. IEEE Trans. Software Eng. 35(2), 224–240 (2009)

    Article  Google Scholar 

  8. Grassmann, W.K.: Finding transient solutions in Markovian event systems through randomization. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability, Pure and Applied, vol. 8, pp. 357–371. Marcel Dekker, New York (1991)

    Google Scholar 

  9. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Jansen, D.N.: Erratum to: Model-checking continuous-time Markov chains by Aziz et al. (February 2011), http://arxiv.org/abs/1102.2079v1

  11. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2), 90–104 (2011)

    Article  Google Scholar 

  12. Safra, S.: On the complexity of ω-automata. In: 29th Ann. Symp. on Foundations of Computer Science, pp. 319–327. IEEE Comp. Soc., Los Alamitos (1988)

    Google Scholar 

  13. Spieler, D.: Model checking of oscillatory and noisy periodic behavior in Markovian population models. Master’s thesis, Saarland University, Saarbrücken (2009), http://alma.cs.uni-sb.de/data/david/mt.pdf

  14. Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton Univ. Pr., Princeton (1994)

    MATH  Google Scholar 

  15. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Symposium on Logic in Computer Science, pp. 332–345. IEEE Comp. Soc., Los Alamitos (1986)

    Google Scholar 

  16. Zhang, L., Jansen, D.N., Nielson, F., Hermanns, H.: Automata-based CSL model checking (April 2011), http://arxiv.org/abs/1104.4983

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L., Jansen, D.N., Nielson, F., Hermanns, H. (2011). Automata-Based CSL Model Checking. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22012-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22011-1

  • Online ISBN: 978-3-642-22012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics