Skip to main content

On Reachability for Hybrid Automata over Bounded Time

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6756))

Included in the following conference series:

Abstract

This paper investigates the time-bounded version of the reachability problem for hybrid automata. This problem asks whether a given hybrid automaton can reach a given target location within T time units, where T is a constant rational value. We show that, in contrast to the classical (unbounded) reachability problem, the timed-bounded version is decidable for rectangular hybrid automata provided only non-negative rates are allowed. This class of systems is of practical interest and subsumes, among others, the class of stopwatch automata. We also show that the problem becomes undecidable if either diagonal constraints or both negative and positive rates are allowed.

Work supported by the projects: (i) QUASIMODO (FP7- ICT-STREP-214755), Quasimodo: “Quantitative System Properties in Model-Driven-Design of Embedded”, http://www.quasimodo.aau.dk/ , (ii) GASICS (ESF-EUROCORES LogiCCC), Gasics: “Games for Analysis and Synthesis of Interactive Computational Systems”, http://www.ulb.ac.be/di/gasics/ , (iii) Moves: “Fundamental Issues in Modelling, Verification and Evolution of Software”, http://moves.ulb.ac.be , a PAI program funded by the Federal Belgian Government, (iv) the ARC project AUWB-2010–10/15-UMONS-3, (v) the FRFC project 2.4515.11 and (vi) a grant from the National Bank of Belgium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. TCS 138(1) (1995)

    Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Th. Comp. Sci. 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4(1), 69–76 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. Int. J. Softw. Tools Technol. Transf. 10, 263–279 (2008)

    Article  MATH  Google Scholar 

  6. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 145–159. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc., Englewood Cliffs (1967)

    MATH  Google Scholar 

  10. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 22–37. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, JF., Worrell, J. (2011). On Reachability for Hybrid Automata over Bounded Time. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22012-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22011-1

  • Online ISBN: 978-3-642-22012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics