Abstract
Differential privacy is a notion that has emerged in the community of statistical databases, as a response to the problem of protecting the privacy of the database’s participants when performing statistical queries. The idea is that a randomized query satisfies differential privacy if the likelihood of obtaining a certain answer for a database x is not too different from the likelihood of obtaining the same answer on adjacent databases, i.e. databases which differ from x for only one individual.
Information flow is an area of Security concerned with the problem of controlling the leakage of confidential information in programs and protocols. Nowadays, one of the most established approaches to quantify and to reason about leakage is based on the Rényi min entropy version of information theory.
In this paper, we analyze critically the notion of differential privacy in light of the conceptual framework provided by the Rényi min information theory. We show that there is a close relation between differential privacy and leakage, due to the graph symmetries induced by the adjacency relation. Furthermore, we consider the utility of the randomized answer, which measures its expected degree of accuracy. We focus on certain kinds of utility functions called “binary”, which have a close correspondence with the Rényi min mutual information. Again, it turns out that there can be a tight correspondence between differential privacy and utility, depending on the symmetries induced by the adjacency relation and by the query. Depending on these symmetries we can also build an optimal-utility randomization mechanism while preserving the required level of differential privacy. Our main contribution is a study of the kind of structures that can be induced by the adjacency relation and the query, and how to use them to derive bounds on the leakage and achieve the optimal utility.
This work has been partially supported by the project ANR-09-BLAN-0169-01 PANDA and by the INRIA DRI Equipe Associée PRINTEMPS. The work of Miguel E. Andrés has been supported by the LIX-Qualcomm postdoc fellowship 2010.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Differential privacy: on the trade-off between utility and information leakage. Technical report (2011), http://hal.inria.fr/inria-00580122/en/
Alvim, M.S., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Differential privacy versus quantitative information flow. Technical report (2010)
Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage of information-hiding systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 373–389. Springer, Heidelberg (2010)
Barthe, G., Köpf, B.: Information-theoretic bounds for differentially private mechanisms. In: Proc. of CSF (to appear, 2011)
Boreale, M., Pampaloni, F., Paolini, M.: Asymptotic information leakage under one-try attacks. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 396–410. Springer, Heidelberg (2011)
Braun, C., Chatzikokolakis, K., Palamidessi, C.: Compositional methods for information-hiding. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 443–457. Springer, Heidelberg (2008)
Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for one-try attacks. In: Proc. of MFPS. ENTCS, vol. 249, pp. 75–91. Elsevier, Amsterdam (2009)
Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Probability of error in information-hiding protocols. In: Proc. of CSF, pp. 341–354. IEEE, Los Alamitos (2007)
Clarkson, M.R., Schneider, F.B.: Quantification of integrity, Tech. Rep. (2011), http://hdl.handle.net/1813/22012
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Dwork, C.: Differential privacy in new settings. In: Proc. of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, pp. 174–183. SIAM, Philadelphia (2010)
Dwork, C.: A firm foundation for private data analysis. Communications of the ACM 54(1), 86–96 (2011)
Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Proc. of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31-June 2, pp. 371–380. ACM, New York (2009)
Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: Proc. of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 351–360. ACM, New York (2009)
Heusser, J., Malacaria, P.: Applied quantitative information flow and statistical databases. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp. 96–110. Springer, Heidelberg (2010)
Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryptography under timing attacks. In: Proc. of CSF, pp. 44–56. IEEE, Los Alamitos (2010)
McIver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235. Springer, Heidelberg (2010)
Rényi, A.: On Measures of Entropy and Information. In: Proc. of the 4th Berkeley Symposium on Mathematics, Statistics, and Probability, pp. 547–561 (1961)
Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C. (2011). On the Relation between Differential Privacy and Quantitative Information Flow. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-22012-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22011-1
Online ISBN: 978-3-642-22012-8
eBook Packages: Computer ScienceComputer Science (R0)