Abstract
Network flows that vary over time arise naturally when modeling rapidly evolving systems such as the Internet. In this paper, we continue the study of equilibria for flows over time in the single-source single-sink deterministic queuing model proposed by Koch and Skutella. We give a constructive proof for the existence and uniqueness of equilibria for the case of a piecewise constant inflow rate, through a detailed analysis of the static flows obtained as derivatives of a dynamic equilibrium.
Supported in part by Instituto Milenio Sistemas Complejos de Ingeniería, and FONDECYT grants 1090050 and 1100046.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, E.J., Philpott, A.B.: Optimisation of flows in networks over time. In: Kelly, F.P. (ed.) Probability, Statistics and Optimisation, pp. 369–382. Wiley, New York (1994)
Bhaskar, U., Fleischer, L., Anshelevich, E.: A stackelberg strategy for routing flow over time. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 192–201 (2011)
Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)
Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)
Fleischer, L., Tardos, E.: Efficient continuous-time dynamic network flow algorithms. Operations Research 23(3-5), 71–80 (1998)
Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)
Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)
Gale, D.: Transient flows in networks. Michigan Mathematical Journal 6, 59–63 (1959)
Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theory of Computing Systems (to appear)
Macko, M., Larson, K., Steskal, Ľ.: Braess’s Paradox for Flows over Time. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) Algorithmic Game Theory. LNCS, vol. 6386, pp. 262–275. Springer, Heidelberg (2010)
Ran, B., Boyce, D.: Modeling Dynamic Transportation Networks. Springer, Berlin (1996)
Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovasz, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Berlin (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cominetti, R., Correa, J.R., Larré, O. (2011). Existence and Uniqueness of Equilibria for Flows over Time. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-22012-8_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22011-1
Online ISBN: 978-3-642-22012-8
eBook Packages: Computer ScienceComputer Science (R0)