Skip to main content

Local Matching Dynamics in Social Networks

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6756))

Included in the following conference series:

  • 1587 Accesses

Abstract

We study stable marriage and roommates problems in graphs with locality constraints. Each player is a node in a social network and has an incentive to match with other players. The value of a match is specified by an edge weight. Players explore possible matches only based on their current neighborhood. We study convergence of natural better-response dynamics that converge to locally stable matchings – matchings that allow no incentive to deviate with respect to their imposed information structure in the social network. For every starting state we construct in polynomial time a sequence of polynomially many better-response moves to a locally stable matching. However, for a large class of oblivious dynamics including random and concurrent better-response the convergence time turns out to be exponential. In contrast, convergence time becomes polynomial if we allow the players to have a small amount of random memory, even for many-to-many matchings and more general notions of neighborhood.

Supported by DFG grant Ho 3831/3-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, D., Levavi, A., Manlove, D., O’Malley, G.: The stable roommates problem with globally ranked pairs. Internet Math. 5(4), 493–515 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöcking, B.: Uncoordinated two-sided matching markets. SIAM J. Comput. 40(1), 92–106 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Akkaya, K., Guneydas, I., Bicak, A.: Autonomous actor positioning in wireless sensor and actor networks using stable-matching. Intl. J. Parallel, Emergent and Distrib. Syst. 25(6), 439–464 (2010)

    Article  MathSciNet  Google Scholar 

  4. Anshelevich, E., Hoefer, M.: Contribution games in social networks. In: Proc. 18th European Symposium on Algorithms (ESA), vol. 1, pp. 158–169 (2010)

    Google Scholar 

  5. Arcaute, E., Vassilvitskii, S.: Social networks and stable matchings in the job market. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 220–231. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Echenique, F., Oviedo, J.: A theory of stability in many-to-many matching markets. Theoretical Economics 1(2), 233–273 (2006)

    Google Scholar 

  7. Eriksson, K., Häggström, O.: Instability of matchings in decentralized markets with various preference structures. Intl. J. Game Theory 36(3-4), 409–420 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feder, T., Megiddo, N., Plotkin, S.: A sublinear parallel algorithm for stable matching. Theoret. Comput. Sci. 233(1-2), 297–308 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fleiner, T.: A fixed-point approach to stable matchings and some applications. Math. Oper. Res. 28(1), 103–126 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Floréen, P., Kaski, P., Polishchuk, V., Suomela, J.: Almost stable matchings by truncating the gale-shapley algorithm. Algorithmica 58(1), 102–118 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gale, D., Shapley, L.: College admissions and the stability of marriage. Amer. Math. Monthly 69(1), 9–15 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goemans, M., Li, L., Mirrokni, V., Thottan, M.: Market sharing games applied to content distribution in ad-hoc networks. IEEE J. Sel. Area Comm. 24(5), 1020–1033 (2006)

    Article  Google Scholar 

  13. Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)

    MATH  Google Scholar 

  14. Kelso, A., Crawford, V.: Job matchings, coalition formation and gross substitute. Econometrica 50, 1483–1504 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Khuller, S., Mitchell, S., Vazirani, V.: On-line algorithms for weighted bipartite matching and stable marriages. Theoret. Comput. Sci. 127(2), 255–267 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kipnis, A., Patt-Shamir, B.: On the complexity of distributed stable matching with small messages. Distributed Computing 23(3), 151–161 (2010)

    Article  MATH  Google Scholar 

  17. Knuth, D.: Marriages Stables et leurs relations avec d’autres problemes combinatoires. Les Presses de l’Université de Montréal (1976)

    Google Scholar 

  18. Mathieu, F.: Self-stabilization in preference-based systems. Peer-to-Peer Netw. Appl. 1(2), 104–121 (2008)

    Article  Google Scholar 

  19. Roth, A., Sönmezc, T., Ünverd, M.U.: Pairwise kidney exchange. J. Econ. Theory 125(2), 151–188 (2005)

    Article  MathSciNet  Google Scholar 

  20. Roth, A., Sotomayor, M.O.: Two-sided Matching: A study in game-theoretic modeling and analysis. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  21. Roth, A., Vate, J.H.V.: Random paths to stability in two-sided matching. Econometrica 58(6), 1475–1480 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoefer, M. (2011). Local Matching Dynamics in Social Networks. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22012-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22011-1

  • Online ISBN: 978-3-642-22012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics