Skip to main content

PFGN: A Hybrid Multiprocessor Real-Time Scheduling Algorithm for Data Stream Management Systems

  • Conference paper
Digital Information and Communication Technology and Its Applications (DICTAP 2011)

Abstract

In many of recent applications data are received as infinite, continuous, rapid and time varying data streams. Real-time processing of queries over such streams is essential in most of the applications. Single processor systems are not capable to provide the desired speed to be real-time. Parallelism over multiprocessors can be used to handle this deficit. In such a system, a multiprocessor real-time scheduling algorithm must be used. Generally, multiprocessor real-time scheduling algorithms fall into two approaches: Partitioning or Global. The partitioning approach has acceptable overhead but can NOT be optimal. The global approach can be but it has considerable overheads.

In this paper, a multiprocessor real-time scheduling algorithm for a DSMS is proposed that employs hybrid approach. It is shown that it is optimal while has minimum overheads. Also, simulation results illustrate that the proposed hybrid multiprocessor real-time scheduling algorithm outperforms algorithms that use either portioning approach or global approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Holman, P., Anderson, J.: Group-based Pfair Scheduling. Real-Time Systems 32(1-2), 125–168 (2006)

    Article  MATH  Google Scholar 

  2. Carpenter, J., et al.: A Categorization of Real-time Multiprocessor Scheduling Problems and Algorithms. In: Handbook on Scheduling: Algorithms, Models and Performance Analysis (2004)

    Google Scholar 

  3. Stankovic, J.A., et al.: Misconceptions About Real-Time Databases. Journal of Computer 32(6) (June 1999)

    Google Scholar 

  4. Sha, L., et al.: Real Time Scheduling Theory: A Historical Perspective. Real-Time Systems 28, 101–155 (2004)

    Article  MATH  Google Scholar 

  5. Baruah, N., et al.: Proportionate progress: A notion of fairness in resource allocation. Algorithmica 15, 600–625 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baruah, S., Gehrke, J., Plaxton, C.: Fast scheduling of periodic tasks on multiple resources. In: Proceedings of the 9th International Parallel Processing Symposium, pp. 280–288 (April 1995)

    Google Scholar 

  7. Anderson, J., Srinivasan, A.: Mixed Pfair/ERfair Scheduling of Asynchronous Periodic Tasks. Journal of Computer and System Sciences 68(1), 157–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Srinivasan, A.: Effcient and Flexible Fair Scheduling of Real-time Tasks on Multiprocessors., Ph. D. thesis, University of North Carolina at Chapel Hill (2003)

    Google Scholar 

  9. Lopez, J., Garcia, M., Diaz, J., Garcia, D.: Worst-case utilization bound for EDF scheduling on real-time multiprocessor systems. In: Proceedings of the 12th Euromicro Conference on Real-time Systems, pp. 25–33 (June 2000)

    Google Scholar 

  10. Srinivasan, A., Anderson, J.H.: Efficient Scheduling of Soft Real-time Applications on Multiprocessors. Journal of Embedded Computing 1(3) (June 2004)

    Google Scholar 

  11. Holman, P., Anderson, J.H.: Using Supertasks to Improve Processor Utilization in Multiprocessor Real-time Systems. In: 15th Euromicro Conference on Multiprocessor Real-Time Systems, ECRTS (2003)

    Google Scholar 

  12. Safaei, A., et al.: QRS: A Quick Real-Time Stream Management System. Submitted to Journal of Real-Time Systems (November 2010)

    Google Scholar 

  13. Alemi, M.: mplementation of a Real-Time DSMS prototype, M. Sc. Thesis, Iran University of Science and Technology (2010)

    Google Scholar 

  14. Safaei, A., Haghjoo, M.S.: Parallel Processing of Continuous Queries over Data Streams. Distributed and Parallel Databases 28(2-3), 93–118 (2010)

    Article  Google Scholar 

  15. Safaei, A., Haghjoo, M.S.: Dispatching of Stream Operators in Parallel Execution of Continuous Queries. Submitted to the Journal of Supercomputing (July 2010)

    Google Scholar 

  16. Safaei, A., et al.: Hybrid Multiprocessor Real-Time Scheduling Approach. International Journal of Computer Science Issues, 8(2) (2011)

    Google Scholar 

  17. Ghalambor, M., Safaeei, A.A.: DSMS scheduling regarding complex QoS metrics. In: IEEE/ACS International Conference on Computer Systems and Applications (AICCSA), May10-13 (2009)

    Google Scholar 

  18. Safaei, A., et al.: Using Finite State Machines in Processing Continuous Queries. International Review on Computers and Software 4(5) (September 2009)

    Google Scholar 

  19. Ramamritham, K., Son, S.H., DiPippo, L.C.: Real-Time Databases and Data Services. The Journal of Real-Time Systems 28(2-3), 179–215 (2004)

    Article  MATH  Google Scholar 

  20. Haritsa, J., et al.: Data Access Scheduling in Firm Real-Time Database Systems. The Journal of Real-Time Systems 4, 203–241 (1992)

    Article  Google Scholar 

  21. Schmidt, S., et al.: Real-time Scheduling for Data Stream Management Systems. In: Proceedings of the 17th Euromicro Conference on Real-Time Systems, ECRTS 2005 (2005)

    Google Scholar 

  22. Graham, M. H.: Issues In Real-Time Data Management, Technical Report, Software Engineering Institute, Carnegie Mellon University Pittsburgh, Pennsylvania (July 1991)

    Google Scholar 

  23. Kang, K.D., Son, S., Stankovic, J.: Specifying and Managing Quality of Real-Time Data Services. IEEE TKDE, University of Virginia (2004)

    Google Scholar 

  24. Aldarmi, S.A.: Real-time database systems: concepts and design. Department of Computer Science, University of York (1998)

    Google Scholar 

  25. Garcia-Molina, H., Salem, K.: Main Memory Database Systems: An Overview. IEEE Transactions on Knowledge and Data Engineering 4(6) (December 1992)

    Google Scholar 

  26. Adelberg, B.S.: Strip: A Soft Real-Time Main Memory Database for Open Systems, PhD. Thesis, Stanford university (1997)

    Google Scholar 

  27. Gruenwald, L., Liu, S.: A performance study of concurrency control in a real-time main memory database system. ACM SIGMOD Record 22(4) (December 1993)

    Google Scholar 

  28. Babcock, B., et al.: Models and issues in data stream systems. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (2003)

    Google Scholar 

  29. Stonebraker, M., et al.: The 8 Requirements of Real-Time Stream Processing. SIGMOD Records 34(4) (December 2005)

    Google Scholar 

  30. Johnson, T., et al.: Query-Aware Partitioning for Monitoring Massive Network Data Streams. In: Proc. Of SIGMOD (2008)

    Google Scholar 

  31. Kang, K.D., Son, S., Stankovic, J.: Specifying and Managing Quality of Real-Time Data Services. IEEE TKDE, University of Virginia (2004)

    Google Scholar 

  32. Aldarmi, S.A.: Real-time database systems: concepts and design. Department of Computer Science, University of York (1998)

    Google Scholar 

  33. The internet traffic archive, http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html (last accessed on January 2011)

  34. Babcock, B., et al.: Models and Issues in Data Stream Systems. In: Invited paper in Proc. Of PODS (June 2002)

    Google Scholar 

  35. The STREAM Group. STREAM: The Stanford Stream Data Manager. IEEE Data Engineering Bulletin (March 2003)

    Google Scholar 

  36. Abadi, et al.: Aurora: A New Model and Architecture for Data Stream Management. VLDB Journal 2(12), 120–139 (2003)

    Article  Google Scholar 

  37. Ou, Z., Yu, G., Yu, Y., Wu, S., Yang, X., Deng, Q.: Tick Scheduling: A Deadline Based Optimal Task Scheduling Approach for Real-Time Data Stream Systems. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp. 725–730. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  38. Nehme, R.V., et al.: Tagging Stream Data for Rich Real-Time Services. In: Proc. of VLDB (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Safaei, A.A., Haghjoo, M.S., Abdi, F. (2011). PFGN: A Hybrid Multiprocessor Real-Time Scheduling Algorithm for Data Stream Management Systems. In: Cherifi, H., Zain, J.M., El-Qawasmeh, E. (eds) Digital Information and Communication Technology and Its Applications. DICTAP 2011. Communications in Computer and Information Science, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22027-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22027-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22026-5

  • Online ISBN: 978-3-642-22027-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics