Skip to main content

A Generative Approach for Image-Based Modeling of Tumor Growth

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Abstract

Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multi-modal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvord, E.C., Swanson, K.R.: Using mathematical modeling to predict survival of low-grade gliomas. Ann. Neurol. 61, 496–497 (2007)

    Article  Google Scholar 

  2. Cuadra, B.B., Pollo, C., Bardera, A., Cuisenaire, O., Thiran, J.P.: Atlas-based segmentation of pathological brain MR images using a model of lesion growth. IEEE TMI 23, 1301–1314 (2004)

    Google Scholar 

  3. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caseiras, G.B., Ciccarelli, O., Altmann, D.R., Benton, C.E., Tozer, D.J., Tofts, P.S., Yousry, T.A., Rees, J., Waldman, A.D., Jäger, H.R.: Low-grade gliomas: six-month tumor growth predicts patient outcome better than admission tumor volume, relative cerebral blood volume, and apparent diffusion coefficient. Radiology 253, 505–512 (2009)

    Article  Google Scholar 

  5. Chaplain, M.A.J., Stuart, A.M.: A mathematical model for the diffusion of tumour angiogenesis factor into the surrounding host tissue. J. Math. Appl. Med. Biol. 8, 191–220 (1991)

    Article  MATH  Google Scholar 

  6. Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S.K., Malandain, G., Ayache, N.: Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE TMI 24, 1334–1346 (2005)

    Google Scholar 

  7. Cobzas, D., Mosayebi, P., Murtha, A., Jagersand, M.: Tumor invasion margin on the riemannian space of brain fibers. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 531–539. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE TMI 9, 629–640 (2008)

    Google Scholar 

  9. Ganslandt, O., Stadlbauer, A., Fahlbusch, R., Kamada, K., Buslei, R., Blumcke, I., Moser, E., Nimsky, C.: 1H-MRSI integrated into image-guided surgery: correlation to standard MR imaging and tumor cell density. Neurosurg. 56, 291–298 (2005)

    Google Scholar 

  10. Gooya, A., Biros, G., Davatzikos, C.: Deformable registration of glioma images using EM algorithm and diffusion reaction modeling. IEEE TMI 30, 375–390 (2011)

    Google Scholar 

  11. Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: Efficient adaptive MCMC. Statistics and Computing 16, 339–354 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hamamci, A., Unal, G., Kucuk, N., Engin, K.: Cellular automata segmentation of brain tumors on post contrast MR images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 137–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Hirsch, S., Szczerba, D., Lloyd, B., Bajka, M., Kuster, N., Székely, G.: A mechano-chemical model of a solid tumor for therapy outcome predictions. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 715–724. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56, 793–825 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klimke, A., Wohlmuth, B.: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Trans. Math. Software 31, 1–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Konukoglu, E., Clatz, O., Menze, B.H., Weber, M.-A., Stieltjes, B., Mandonnet, E., Delingette, H., Ayache, N.: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic Eikonal equations. IEEE TMI 29, 77–95 (2010)

    Google Scholar 

  17. Kyriacou, S.K., Davatzikos, C., Zinreich, S.J., Bryan, R.N.: Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE TMI 18, 580–592 (1999)

    Google Scholar 

  18. Ma, X., Zabaras, N.: An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method. Inverse Problems 25 (2009)

    Google Scholar 

  19. McCorquodale, P., Colella, P., Johansen, H.: A Cartesian grid embedded boundary method for the heat equation in irregular domains. J. Comp. Phys. 173(2), 620–635 (2001)

    Article  MATH  Google Scholar 

  20. Menze, B.H., Stretton, E., Konukoglu, E., Ayache, N.: Image-based modeling of tumor growth in patients with glioma. In: Garbe, C.S., Rannacher, R., Platt, U., Wagner, T. (eds.) Optimal Control in Image Processing. Springer, Heidelberg (2011)

    Google Scholar 

  21. Mohamed, A., Zacharakib, E.I., Shena, D., Davatzikos, C.: Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. MedIA 10, 752–763 (2006)

    Google Scholar 

  22. Pallud, J., Mandonnet, E., Duffau, H., Galanaud, D., Taillandier, L., Capelle, L.: Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann. Neurol. 60, 380–383 (2006)

    Article  Google Scholar 

  23. Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in MR images for evaluation of segmentation efficacy. MedIA 13, 297–311 (2009)

    Google Scholar 

  24. Swanson, K.R., Alvord, E.C., Murray, J.D.: A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif. 33, 317–329 (2000)

    Article  Google Scholar 

  25. Zacharaki, E., Shen, D., Mohamed, A., Davatzikos, C.: Registration of brain images with tumors: Towards the construction of statistical atlases for therapy planning. In: Proc. ISBI (2006)

    Google Scholar 

  26. Zacharaki, E.I., Hogea, C.S., Shen, D., Biros, G., Davatzikos, C.: Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. Neuroimage 46, 762–774 (2009)

    Article  Google Scholar 

  27. Zarabas, N.: Solving stochastic inverse problems: A sparse grid collocation approach. In: Biegler, L. (ed.) Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley, Chichester (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Menze, B.H. et al. (2011). A Generative Approach for Image-Based Modeling of Tumor Growth. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics