Abstract
Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multi-modal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvord, E.C., Swanson, K.R.: Using mathematical modeling to predict survival of low-grade gliomas. Ann. Neurol. 61, 496–497 (2007)
Cuadra, B.B., Pollo, C., Bardera, A., Cuisenaire, O., Thiran, J.P.: Atlas-based segmentation of pathological brain MR images using a model of lesion growth. IEEE TMI 23, 1301–1314 (2004)
Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)
Caseiras, G.B., Ciccarelli, O., Altmann, D.R., Benton, C.E., Tozer, D.J., Tofts, P.S., Yousry, T.A., Rees, J., Waldman, A.D., Jäger, H.R.: Low-grade gliomas: six-month tumor growth predicts patient outcome better than admission tumor volume, relative cerebral blood volume, and apparent diffusion coefficient. Radiology 253, 505–512 (2009)
Chaplain, M.A.J., Stuart, A.M.: A mathematical model for the diffusion of tumour angiogenesis factor into the surrounding host tissue. J. Math. Appl. Med. Biol. 8, 191–220 (1991)
Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S.K., Malandain, G., Ayache, N.: Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE TMI 24, 1334–1346 (2005)
Cobzas, D., Mosayebi, P., Murtha, A., Jagersand, M.: Tumor invasion margin on the riemannian space of brain fibers. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 531–539. Springer, Heidelberg (2009)
Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE TMI 9, 629–640 (2008)
Ganslandt, O., Stadlbauer, A., Fahlbusch, R., Kamada, K., Buslei, R., Blumcke, I., Moser, E., Nimsky, C.: 1H-MRSI integrated into image-guided surgery: correlation to standard MR imaging and tumor cell density. Neurosurg. 56, 291–298 (2005)
Gooya, A., Biros, G., Davatzikos, C.: Deformable registration of glioma images using EM algorithm and diffusion reaction modeling. IEEE TMI 30, 375–390 (2011)
Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: Efficient adaptive MCMC. Statistics and Computing 16, 339–354 (2006)
Hamamci, A., Unal, G., Kucuk, N., Engin, K.: Cellular automata segmentation of brain tumors on post contrast MR images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 137–146. Springer, Heidelberg (2010)
Hirsch, S., Szczerba, D., Lloyd, B., Bajka, M., Kuster, N., Székely, G.: A mechano-chemical model of a solid tumor for therapy outcome predictions. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 715–724. Springer, Heidelberg (2009)
Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56, 793–825 (2008)
Klimke, A., Wohlmuth, B.: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Trans. Math. Software 31, 1–20 (2005)
Konukoglu, E., Clatz, O., Menze, B.H., Weber, M.-A., Stieltjes, B., Mandonnet, E., Delingette, H., Ayache, N.: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic Eikonal equations. IEEE TMI 29, 77–95 (2010)
Kyriacou, S.K., Davatzikos, C., Zinreich, S.J., Bryan, R.N.: Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE TMI 18, 580–592 (1999)
Ma, X., Zabaras, N.: An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method. Inverse Problems 25 (2009)
McCorquodale, P., Colella, P., Johansen, H.: A Cartesian grid embedded boundary method for the heat equation in irregular domains. J. Comp. Phys. 173(2), 620–635 (2001)
Menze, B.H., Stretton, E., Konukoglu, E., Ayache, N.: Image-based modeling of tumor growth in patients with glioma. In: Garbe, C.S., Rannacher, R., Platt, U., Wagner, T. (eds.) Optimal Control in Image Processing. Springer, Heidelberg (2011)
Mohamed, A., Zacharakib, E.I., Shena, D., Davatzikos, C.: Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. MedIA 10, 752–763 (2006)
Pallud, J., Mandonnet, E., Duffau, H., Galanaud, D., Taillandier, L., Capelle, L.: Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann. Neurol. 60, 380–383 (2006)
Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in MR images for evaluation of segmentation efficacy. MedIA 13, 297–311 (2009)
Swanson, K.R., Alvord, E.C., Murray, J.D.: A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif. 33, 317–329 (2000)
Zacharaki, E., Shen, D., Mohamed, A., Davatzikos, C.: Registration of brain images with tumors: Towards the construction of statistical atlases for therapy planning. In: Proc. ISBI (2006)
Zacharaki, E.I., Hogea, C.S., Shen, D., Biros, G., Davatzikos, C.: Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. Neuroimage 46, 762–774 (2009)
Zarabas, N.: Solving stochastic inverse problems: A sparse grid collocation approach. In: Biegler, L. (ed.) Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley, Chichester (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Menze, B.H. et al. (2011). A Generative Approach for Image-Based Modeling of Tumor Growth. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_60
Download citation
DOI: https://doi.org/10.1007/978-3-642-22092-0_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22091-3
Online ISBN: 978-3-642-22092-0
eBook Packages: Computer ScienceComputer Science (R0)