Skip to main content

Rough Set Theory Approach for Classifying Multimedia Data

  • Conference paper
Software Engineering and Computer Systems (ICSECS 2011)

Abstract

The huge size of multimedia data requires for efficient data classification and organization in providing effective multimedia data manipulation. Those valuable data must be captured and stored for potential purposes. One of the main problems in Multimedia Information System (MIS) is the management of multimedia data. As a consequence, multimedia data management has emerged as an important research area for querying, retrieving, inserting and updating of these vast multimedia data. This research considers the rough set theory technique to organize and categorize the multimedia data. Rough set theory method is useful for exploring multimedia data and simplicity to construct multimedia data classification. Classification will help to improve the performance of multimedia data retrieving and organizing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nordin, M.A.R., Farham, M., Suhailan, S., Sufian, M.D., Kamir, M.Y.: Applying Time Granularity in Multimedia Data Management. In: Proc. International Conference on Computational Intelligence and Vehicular System (CIVS), pp. 60–64 (2010)

    Google Scholar 

  2. Pawlak, Z., Grzymala–Busse, J.W., Slowiriski, R., Ziarko, W.: Rough Sets. Comm. of the ACM. 38(11), 88–95 (1995)

    Article  Google Scholar 

  3. Pawlak, Z.: Rough Set: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrent (1991)

    Book  MATH  Google Scholar 

  4. Zhong, N., Dong, J.Z., Ohsuga, S.: Using Rough Sets with Heuristics for feature Selection. Journal of Intelligent Information Systems 16, 199–214 (2001)

    Article  MATH  Google Scholar 

  5. Shyng, J.-Y., Wang, F.-K., Tzeng, G.-H., Wu, K.-S.: Rough Set Theory in Analyzing the Attributes of Combination Values for the Insurance Market. Journal of Expert Systems with Application 32, 56–64 (2007)

    Article  Google Scholar 

  6. Jalal, S.K.: Mutimedia Database: Content and Structure. In: Workshop on Multimedia and Internet Technologies, Bangalore (2001)

    Google Scholar 

  7. Griffioen, J., Seales, B., Yavatkar, R., Kiernan, K.S.: Content Based Multimedia Data Management and Efficient Remote Access. Extrait de la Revue Informatique et Statistique dens les Sciences Humaines 1(4), 213–233 (1997)

    Google Scholar 

  8. Candan, K.S., Sapino, M.L.: Data Management for Multimedia Retrieval. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  9. Cheong, S.N., Azahar, K.M., Hanmandlu, M.: Development of Web-based Multimedia News Management System for News on Demand Kiosk Network. WSEAS Transaction on Computers 2(2), 360–365 (2003)

    Google Scholar 

  10. Azhar, R., Zhao, X., Cone, S., Merrell, R.: Electronic Multimedia Data Management for Remote Population in Ecuador. International Congress Series 1268, 301–306 (2004)

    Article  Google Scholar 

  11. Abidin, S.Z.Z., Idris, N.M., Husain, A.H.: Extraction and Classification of Unstructured Data in WebPages for Structured Multimedia Database via XML. In: International Conference in Information Retrieval Knowledge Management (CAMP), pp. 44–49 (2010)

    Google Scholar 

  12. Xu, W.-H., Zhang, W.-X.: Knowledge Reduction in Consistent Information System Based on Dominance Relations. In: Liu, Y., Chen, G., Ying, M. (eds.) Optimization Techniques 1973. LNCS, vol. 3, pp. 1493–1496. Springer, Tsinghua University Press (2006)

    Google Scholar 

  13. Wang, Y., Ding, M., Zhou, C., Zhang, T.: A Hybrid Method for Relevance Feedback in Image Retrieval Using Rough Sets and Neural Networks. International Journal of Computational Cognition 3(1), 78–87 (2005)

    Google Scholar 

  14. Fomina, M., Kulikov, A., Vagin, V.: The Development of The Generalization Algorithm based on The Rough Set Theory. International Journal Information Theories & Application 13(13), 255–262 (2006)

    Google Scholar 

  15. Hu, X.: Using Rough Sets Theory and Database Operation to Construct a Good Ensemble of Classifiers for Data Mining Applications. In: Proc. of ICDM, pp. 233–240 (2001)

    Google Scholar 

  16. Nordin, M.A.R., Yazid, M.M.S., Aziz, A., Osman, A.M.T.: DNA Sequence Database Classification and Reduction: Rough Sets Theory Approach. In: Proc. of 2nd International Conference on Informatics, pp. 41–47 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rahman, M.N.A., Lazim, Y.M., Mohamed, F., Safei, S., Deris, S.M., Yusof, M.K. (2011). Rough Set Theory Approach for Classifying Multimedia Data. In: Zain, J.M., Wan Mohd, W.M.b., El-Qawasmeh, E. (eds) Software Engineering and Computer Systems. ICSECS 2011. Communications in Computer and Information Science, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22191-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22191-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22190-3

  • Online ISBN: 978-3-642-22191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics