Skip to main content

Network Verification via Routing Table Queries

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2011)

Abstract

We address the problem of verifying the accuracy of a map of a network by making as few measurements as possible on its nodes. This task can be formalized as an optimization problem that, given a graph G = (V,E), and a query model specifying the information returned by a query at a node, asks for finding a minimum-size subset of nodes of G to be queried so as to univocally identify G. This problem has been faced w.r.t. a couple of query models assuming that a node had some global knowledge about the network. Here, we propose a new query model based on the local knowledge a node instead usually has. Quite naturally, we assume that a query at a given node returns the associated routing table, i.e., a set of entries which provides, for each destination node, a corresponding (set of) first-hop node(s) along an underlying shortest path. First, we show that any network of n nodes needs Ω(loglogn) queries to be verified. Then, we prove that there is no o(logn)-approximation algorithm for the problem, unless \(\mbox{\sf P}=\mbox{\sf NP}\), even for networks of diameter 2. On the positive side, we provide an O(logn)-approximation algorithm to verify a network of diameter 2, and we give exact polynomial-time algorithms for paths, trees, and cycles of even length.

Part of this work was done while the second author was visiting LaBRI-Bordeaux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffman, M., Mihal’ák, M., Ram, S.: Network discovery and verification. IEEE Journal on Selected Areas in Communications 24(12), 2168–2181 (2006)

    Article  Google Scholar 

  2. Bejerano, Y., Rastogi, M.: Rubust monitoring of link delays and faults in IP networks. In: 22nd IEEE Int. Conf. on Comp. Comm (INFOCOM 2003), pp. 134–144 (2003)

    Google Scholar 

  3. Bilò, D., Erlebach, T., Mihal’ák, M., Widmayer, P.: Discovery of network properties with all-shortest-paths queries. Theoretical Computer Science 411(14-15), 1626–1637 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bshouty, N.H., Mazzawi, H.: Reconstructing weighted graphs with minimal query complexity. Theoretical Computer Science 412(19), 1782–1790 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Choi, S.-S., Kim, J.H.: Optimal query complexity bounds for finding graphs. Artificial Intelligence 174(9-10), 551–569 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dall’Asta, L., Alvarez-Hamelin, J.I., Barrat, A., Vázquez, A., Vespignani, A.: Exploring networks with traceroute-like probes: Theory and simulations. Theoretical Computer Science 355(1), 6–24 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Erlebach, T., Hall, A., Mihal’ák, M.: Approximate Discovery of Random Graphs. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 82–92. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Garey, M.R., Johnson, D.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  9. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: 19th IEEE Int. Conf. on Comp. Comm (INFOCOM 2000), pp. 1371–1380 (2000)

    Google Scholar 

  10. Gravier, S., Klasing, R., Moncel, J.: Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs. Algorithmic Operations Research 3, 43–50 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20, 374–387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harary, F.: A characterization of block graphs. Canad. Math. Bull. 6(1), 1–6 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  13. Harary, F., Melter, R.: The metric dimension of a graph. Ars Combinatoria, 191–195 (1976)

    Google Scholar 

  14. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Applied Mathematics 70, 217–229 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Suomela, J.: Approximability of identifying codes and locating-dominating codes. Information Processing Letters 103(1), 28–33 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bampas, E., Bilò, D., Drovandi, G., Gualà, L., Klasing, R., Proietti, G. (2011). Network Verification via Routing Table Queries. In: Kosowski, A., Yamashita, M. (eds) Structural Information and Communication Complexity. SIROCCO 2011. Lecture Notes in Computer Science, vol 6796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22212-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22212-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22211-5

  • Online ISBN: 978-3-642-22212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics