Skip to main content

CARDSS: Development and Evaluation of a Guideline Based Decision Support System for Cardiac Rehabilitation

  • Conference paper
Artificial Intelligence in Medicine (AIME 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6747))

Included in the following conference series:

  • 1656 Accesses

Abstract

Cardiac rehabilitation is a multidisciplinary therapy aimed at recovery and secondary prevention after hospitalization for cardiac incidents (such as myocardial infarctions) and cardiac interventions (such as heart surgery). To stimulate implementation of the national guidelines, an electronic patient record system with computerised decision support functionalities called CARDSS (cardiac rehabilitation decision support system) was developed, and made available to Dutch rehabilitation clinics. The system was quantitatively evaluated in a cluster randomised trial at 31 clinics, and qualitatively by interviewing 29 users of the system. Computerised decision support was found to improve guideline concordance by increasing professional knowledge of preferred practice, by reducing inertia to previous practice, and by reducing guideline complexity. It was not effective when organizational or procedural changes were required that users considered to be beyond their responsibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Institute of Medicine: Crossing the quality chasm: a new health system for the twenty-first century. National Academy Press, Washington, DC (2001)

    Google Scholar 

  2. Cabana, M.D., Rand, C.S., Powe, N.R., et al.: Why donā€™t physicians follow clinical practice guidelines? A framework for improvement. JAMA 282, 1458ā€“1465 (1999)

    Article  Google Scholar 

  3. Grimshaw, J.M., Thomas, R.E., MacLennan, G., et al.: Effectiveness and efficiency of guideline dissemination and implementation strategies. Health Technol. Assess 8(6), 1ā€“72 (2004)

    Article  Google Scholar 

  4. Grol, R., Grimshaw, J.: From best evidence to best practice: effective implementation of change in patientsā€™ care. Lancet 362, 1225ā€“1230 (2003)

    Article  Google Scholar 

  5. Garg, A.X., Adhikari, N.K., McDonald, H., et al.: Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA 293, 1223ā€“1238 (2005)

    Article  Google Scholar 

  6. Shiffman, R.N., Liaw, Y., Brandt, C.A., Corb, G.J.: Computer-based guideline implementation systems: a systematic review of functionality and effectiveness. J. Am. Med. Inform. Assoc. 6, 104ā€“114 (1999)

    Article  Google Scholar 

  7. Ades, P.: Cardiac rehabilitation and secondary prevention of coronary heart disease. N. Engl. J. Med. 345, 892ā€“902 (2001)

    Article  Google Scholar 

  8. World Health Organization: Needs and Action Priorities in Cardiac Rehabilitation and Secondary Prevention in Patients with CHD. WHO, Copenhagen (1993)

    Google Scholar 

  9. Short, R.: Access to cardiac rehabilitation varies widely across Europe. BMJ 336, 1095 (2008)

    Article  Google Scholar 

  10. Rehabilitation Committee Netherlands Society of Cardiology and Netherlands Heart Foundation. In: Guidelines for Cardiac Rehabilitation 2004, Netherlands Heart Foundation, The Hague (2004)

    Google Scholar 

  11. Goud, R., Hasman, A., Peek, N.: Development of a guideline-based decision support system with explanation facilities for outpatient therapy. Comput Methods Programs Biomed. 91(2), 145ā€“153 (2008)

    Article  Google Scholar 

  12. Shekelle, P.G., Woolf, S.H., Eccles, M., Grimshaw, J.: Clinical guidelines: developing guidelines. BMJ 318(7183), 593ā€“596 (1999)

    Article  Google Scholar 

  13. De Clercq, P.A., Blom, J.A., Korsten, H.H., Hasman, A.: Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif. Intell. Med. 31(1), 1ā€“27 (2004)

    Article  Google Scholar 

  14. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., et al.: Comparing computer-interpretable guideline models: a case-study approach. J. Am. Med. Inform. Assoc. 10(1), 52ā€“68 (2003)

    Article  Google Scholar 

  15. Goud, R., Hasman, A., Strijbis, A.M., Peek, N.: A parallel guideline development and formalization strategy to improve the quality of clinical practice guidelines. Int. J. Med. Inform. 78(8), 513ā€“520 (2009)

    Article  Google Scholar 

  16. De Clercq, P.A., Hasman, A., Blom, J.A., et al.: Design and implementation of a framework to support the development of clinical guidelines. Int. J. Med. Inform. 64, 285ā€“318 (2001)

    Article  Google Scholar 

  17. Friedman, C.P., Wyatt, J.C.: Evaluation Methods in Medical Informatics, 2nd edn. Springer, New York (2006)

    Google Scholar 

  18. Goud, R., de Keizer, N.F., ter Riet, G., Wyatt, J.C., Hasman, A., Hellemans, I.M., Peek, N.: Effect of guideline based computerised decision support on decision making of multidisciplinary teams: cluster randomised trial in cardiac rehabilitation. BMJ 338, b1440 (2009)

    Article  Google Scholar 

  19. Donner, A., Klar, N.: Design and Analysis of Cluster Randomization Trials in Health Research. Arnold, London (2000)

    Google Scholar 

  20. Zeger, S.L., Liang, K.: Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121ā€“130 (1986)

    Article  Google Scholar 

  21. Goud, R., van Engen-Verheul, M.M., de Keizer, N.F., Bal, R., Hasman, A., Hellemans, I.M., Peek, N.: The effect of computerized decision support on barriers to guideline implementation: a qualitative study in outpatient cardiac rehabilitation. Int. J. Med. Inform. 79(6), 430ā€“437 (2010)

    Article  Google Scholar 

  22. Verstappen, W.H., van der Weijden, T., ter Riet, G., Grimshaw, J., Winkens, R., Grol, R.: Block design allowed for control of the Hawthorne effect in a randomized controlled trial of test ordering. J. Clin. Epidemiol. 57(11), 1119ā€“1123 (2004)

    Article  Google Scholar 

  23. Van Engen-Verheul, M.M., de Keizer, N.F., Hellemans, I., Kraaijenhagen, R.A., Hasman, A., Peek, N.: Design of a continuous multifaceted guideline-implementation strategy based on computerized decision support. Stud. Health Technol. Inform. 160(Pt 2), 836ā€“840 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peek, N., Goud, R., de Keizer, N., van Engen-Verheul, M., Kemps, H., Hasman, A. (2011). CARDSS: Development and Evaluation of a Guideline Based Decision Support System for Cardiac Rehabilitation. In: Peleg, M., Lavrač, N., Combi, C. (eds) Artificial Intelligence in Medicine. AIME 2011. Lecture Notes in Computer Science(), vol 6747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22218-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22218-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22217-7

  • Online ISBN: 978-3-642-22218-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics