Abstract
We consider the problem of assigning radii to a given set of points in the plane, such that the resulting set of circles is connected, and the sum of radii is minimized. We show that the problem is polynomially solvable if a connectivity tree is given. If the connectivity tree is unknown, the problem is NP-hard if there are upper bounds on the radii and open otherwise. We give approximation guarantees for a variety of polynomial-time algorithms, describe upper and lower bounds (which are matching in some of the cases), provide polynomial-time approximation schemes, and conclude with experimental results and open problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alt, H., Arkin, E.M., Brönnimann, H., Erickson, J., Fekete, S.P., Knauer, C., Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In: Proc. 22nd ACM Symp. Comp. Geom. (SoCG), pp. 449–458 (2006)
Avis, D., Fukuda, K.: Reverse search for enumeration. Disc. Appl. Math. 65(1-3), 21–46 (1996)
Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005)
Carmi, P., Katz, M.J., Mitchell, J.S.B.: The minimum-area spanning tree problem. Comput. Geom. Theory Appl. 35, 218–225 (2006)
Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. J. Comput. Syst. Sci. 68, 417–441 (2004)
Clementi, A.E., Penna, P., Silvestri, R.: On the power assignment problem in radio networks. Mobile Networks and Applications 9(2), 125–140 (2004)
Doddi, S., Marathe, M.V., Ravi, S.S., Taylor, D.S., Widmayer, P.: Approximation algorithms for clustering to minimize the sum of diameters. Nordic J. of Computing 7, 185–203 (2000)
Fuchs, B.: On the hardness of range assignment problems. Networks 52(4), 183–195 (2008)
Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On clustering to minimize the sum of radii. In: Proc. 19th ACM-SIAM Symp. Disc. Alg. (SODA), pp. 819–825 (2008)
Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station coverage with minimum total radii. Computer Networks 47(4), 489–501 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chambers, E.W. et al. (2011). Connecting a Set of Circles with Minimum Sum of Radii. In: Dehne, F., Iacono, J., Sack, JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22300-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-22300-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22299-3
Online ISBN: 978-3-642-22300-6
eBook Packages: Computer ScienceComputer Science (R0)