Skip to main content

PTAS for Densest k-Subgraph in Interval Graphs

  • Conference paper
Algorithms and Data Structures (WADS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6844))

Included in the following conference series:

Abstract

Given an interval graph and integer k, we consider the problem of finding a subgraph of size k with a maximum number of induced edges, called densest k-subgraph problem in interval graphs. It has been shown that this problem is NP-hard even for chordal graphs [17], and there is probably no PTAS for general graphs [12]. However, the exact complexity status for interval graphs is a long-standing open problem [17], and the best known approximation result is a 3-approximation algorithm [16]. We shed light on the approximation complexity of finding a densest k-subgraph in interval graphs by presenting a polynomial-time approximation scheme (PTAS), that is, we show that there is an (1+ε)-approximation algorithm for any ε > 0, which is the first such approximation scheme for the densest k-subgraph problem in an important graph class without any further restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Karger, D.R., Karpinski, M.: Polynomial time approximation schemes for dense instances of np-hard problems. J. Comput. Syst. Sci. 58(1), 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms 34(2), 203–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Backer, J., Keil, J.M.: Constant factor approximation algorithms for the densest k-subgraph problem on proper interval graphs and bipartite permutation graphs. Inf. Process. Lett. 110(16), 635–638 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: an O(n 1/4) -approximation for densest k-subgraph. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pp. 201–210 (2010)

    Google Scholar 

  6. Chen, D.Z., Fleischer, R., Li, J.: Densest k-subgraph approximation on intersection graphs. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS, vol. 6534, pp. 83–93. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golumbic, M.C., Trenk, A.N.: Tolerance Graphs. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  10. Gröschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)

    Book  MATH  Google Scholar 

  11. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. Journal of the ACM 22 (1975)

    Google Scholar 

  12. Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science (FOCS 1993), pp. 692–701 (1993)

    Google Scholar 

  14. Lawler, E.L.: Combinatorial optimization - networks and matroids. Holt, Rinehart and Winston, New York (1976)

    MATH  Google Scholar 

  15. Liazi, M., Milis, I., Pascual, F., Zissimopoulos, V.: The densest k-subgraph problem on clique graphs. J. Comb. Optim. 14(4), 465–474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liazi, M., Milis, I., Zissimopoulos, V.: A constant approximation algorithm for the densest k-subgraph problem on chordal graphs. Inf. Process. Lett. 108(1), 29–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Perl, Y., Corneil, D.G.: Clustering and domination in perfect graphs. Discrete Applied Mathematics 9(1), 27–39 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nonner, T. (2011). PTAS for Densest k-Subgraph in Interval Graphs. In: Dehne, F., Iacono, J., Sack, JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22300-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22300-6_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22299-3

  • Online ISBN: 978-3-642-22300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics