Skip to main content

Faster Optimal Algorithms for Segment Minimization with Small Maximal Value

  • Conference paper
Algorithms and Data Structures (WADS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6844))

Included in the following conference series:

  • 1754 Accesses

Abstract

The segment minimization problem consists of finding the smallest set of integer matrices (segments) that sum to a given intensity matrix, such that each summand has only one non-zero value (the segment-value), and the non-zeroes in each row are consecutive. This has direct applications in intensity-modulated radiation therapy, an effective form of cancer treatment.

We study here the special case when the largest value H in the intensity matrix is small. We show that for an intensity matrix with one row, this problem is fixed-parameter tractable (FPT) in H; our algorithm obtains a significant asymptotic speedup over the previous best FPT algorithm. We also show how to solve the full-matrix problem faster than all previously known algorithms. Finally, we address a closely related problem that deals with minimizing the number of segments subject to a minimum beam-on-time, defined as the sum of the segment-values. Here, we obtain an almost-quadratic speedup.

This work was supported by the “Actions de Recherche Concertées” (ARC) fund of the “Communauté française de Belgique”, and the National Sciences and Engineering Research Council of Canada (NSERC). C.E. acknowledges support from the “Fonds pour la Recherche dans l’Industrie et l’Agriculture” (F.R.I.A.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: Minimum cardinality matrix decomposition into consecutive-ones matrices: CP and IP approaches. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 1–15. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Baatar, D., Hamacher, H.W.: New LP model for multileaf collimators in radiation therapy. In: Contribution to the Conference ORP3. Universität Kaiserslautern (2003)

    Google Scholar 

  3. Baatar, D., Hamacher, H.W., Ehrgott, M., Woeginger, G.J.: Decomposition of integer matrices and multileaf collimator sequencing. Discrete Applied Mathematics 152(1-3), 6–34 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, N., Coppersmith, D., Schieber, B.: Minimizing setup and beam-on times in radiation therapy. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 27–38. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Biedl, T., Durocher, S., Engelbeen, C., Fiorini, S., Young, M.: Faster optimal algorithms for segments minimization with small maximal value. Technical Report CS-2011-08. University of Waterloo (2011)

    Google Scholar 

  6. Biedl, T., Durocher, S., Hoos, H.H., Luan, S., Saia, J., Young, M.: A note on improving the performance of approximation algorithms for radiation therapy. Information Processing Letters 111(7), 326–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brand, S.: The sum-of-increments constraint in the consecutive-ones matrix decomposition problem. In: Proceedings of the 24th Symposium on Applied Computing (SAC), pp. 1417–1418 (2009)

    Google Scholar 

  8. Cambazard, H., O’Mahony, E., O’Sullivan, B.: A shortest path-based approach to the multileaf collimator sequencing problem. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 41–55. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Chen, D.Z., Hu, X.S., Luan, S., Naqvi, S.A., Wang, C., Yu, C.X.: Generalized geometric approaches for leaf sequencing problems in radiation therapy. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 271–281. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Collins, M.J., Kempe, D., Saia, J., Young, M.: Non-negative integral subset representations of integer sets. Information Processing Letters 101(3), 129–133 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cotrutz, C., Xing, L.: Segment-based dose optimization using a genetic algorithm. Physics in Medicine and Biology 48(18), 2987–2998 (2003)

    Article  Google Scholar 

  12. de Azevedo Pribitkin, W.: Simple upper bounds for partition functions. The Ramanujan Journal 18(1), 113–119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, 3rd edn. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  14. Engel, K.: A new algorithm for optimal multileaf collimator field segmentation. Discrete Applied Mathematics 152(1-3), 35–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kalinowski, T.: The complexity of minimizing the number of shape matrices subject to minimal beam-on time in multileaf collimator field decomposition with bounded fluence. Discrete Applied Mathematics 157(9), 2089–2104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luan, S., Saia, J., Young, M.: Approximation algorithms for minimizing segments in radiation therapy. Information Processing Letters 101(6), 239–244 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wake, G.M.G.H., Boland, N., Jennings, L.S.: Mixed integer programming approaches to exact minimization of total treatment time in cancer radiotherapy using multileaf collimators. Computers and Operations Research 36(3), 795–810 (2009)

    Article  MATH  Google Scholar 

  18. Xia, P., Verhey, L.J.: Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Medical Physics 25(8), 1424–1434 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biedl, T., Durocher, S., Engelbeen, C., Fiorini, S., Young, M. (2011). Faster Optimal Algorithms for Segment Minimization with Small Maximal Value. In: Dehne, F., Iacono, J., Sack, JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22300-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22300-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22299-3

  • Online ISBN: 978-3-642-22300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics